

IN-DEPTH SURVEY REPORT:

A LABORATORY EVALUATION OF PROTOTYPE ENGINEERING CONTROLS DESIGNED TO REDUCE OCCUPATIONAL EXPOSURES DURING ASPHALT PAVING OPERATIONS

at

Caterpillar Paving Products (Barber-Greene)
DeKalb, Illinois

REPORT WRITTEN BY: Ronald L. Mickelsen Gary S. Earnest Kenneth R. Mead

> REPORT DATE: August 1999

REPORT NO.: ECTB 208-16a

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
Centers for Disease Control and Prevention
National Institute for Occupational Safety and Health
Division of Physical Sciences and Engineering
4676 Columbia Parkway, R5
Cincinnati, Ohio 45226

REPRODUCED BY:
U.S. Department of Commerce
National Technical Information Service
Springfield, Virginia 22161

GENERAL DISCLAIMER

This document may be affected by one or more of the following statements:

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- The document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

PLANT SURVEYED:

Caterpillar Paving Products

(Historical Name: Barber-Greene)

12101 Barber-Greene Road DeKalb, Illinois 60115

SIC CODE:

1611

SURVEY DATE:

March 12-15, 1996

SURVEY CONDUCTED BY:

Ronald L. Mickelsen

Gary S. Earnest Walter M. Haag

EMPLOYER REPRESENTATIVES:

Jim Placiennik Design Engineer

EMPLOYEE REPRESENTATIVES:

No Employee Representatives

MANUSCRIPT PREPARED BY:

Bernice L. Clark Robin Smith

DISCLAIMER

Mention of company names or products does not constitute endorsement by the Centers for Disease Control and Prevention (CDC).

PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE

EXECUTIVE SUMMARY

On March 12-15, 1996, researchers from the National Institute for Occupational Safety and Health (NIOSH) evaluated a prototype engineering control system at Caterpillar Paving Products, DeKalb, Illinois. The control system was designed for the control of asphalt emissions from the auger area during asphalt paving. The Caterpillar engineering controls evaluation was completed as part of a Department of Transportation (DOT) project to evaluate the effectiveness of engineering controls on asphalt paving equipment. NIOSH researchers are conducting the research through an inter-agency agreement with DOT's Federal Highway Administration. Additionally, the National Asphalt Paving Association is playing a critical role in coordinating the paving manufacturers' and paving contractors' voluntary participation in the study.

The study consists of two major phases. During the primary phase, NIOSH researchers visited each participating manufacturer and evaluated their engineering control designs under managed environmental conditions. The indoor evaluation used tracer gas analysis techniques to both quantify the control's exhaust flow rate and determine the capture efficiency. Results from the indoor evaluations provided equipment manufacturers with the necessary information to maximize engineering control performance prior to the second phase of the study, performance evaluation of the prototype engineering controls under "real-life" paving conditions. The scope of this report is limited to the Caterpillar phase one evaluation.

The Caterpillar phase one evaluation studied the performance of one engineering control design using two different fans. Both fans were tested indoors and the larger fan was also tested outdoors. The control system design incorporated a long hood mounted on the back of the tractor above the auger area, covering approximately 60 percent of the area between the tractor and the screed. A duct mounted at the top of the slat conveyor connected the hood to a fan mounted under the tractor deck. The fan's exhaust duct extended six feet above the tractor deck. The control system exhaust volume was 1,120 cubic feet per minute (cfm) with the 1.0 horsepower (hp) fan and 1,350 cfm for the 1.5 hp fan. The average indoor capture efficiency was approximately 72 percent with the 1.0 hp fan and 95 percent with the 1.5 hp fan. The outdoor evaluation, using the 1.5 hp fan, revealed an average capture efficiency of 68 percent. Compared to the indoor, the outdoor results showed a 27 percentage point decline in capture efficiency and increased variation in results as wind gusts hampered the control's ability to consistently capture the surrogate contaminant.

The evaluated Caterpillar engineering control system has the potential to significantly reduce worker exposure during asphalt paving processes. The potential reduction is increased when using the larger exhaust fan. Recommendations to Caterpillar design engineers include: (1) Modifying both the transition between the duct and the hood, and the transition between the duct and the fan to reduce static pressure losses and increase exhaust flow rate; (2) Increasing the duct area located above the slat conveyors will also reducing the static pressure losses and increasing the exhaust flow rate; and (3) Increasing the extent of enclosure coverage around the auger area to reduce cross-draft interference and increase capture efficiency.

Since the intent of the phase one evaluations was to provide equipment manufacturers with engineering performance and design feedback, various original and imaginative approaches were developed with the knowledge that these prototypes would undergo preliminary performance testing to identify which designs showed the most merit. Each manufacturer received design modification recommendations specific to their prototypes' performance during the phase one testing. Prior to finalization of this report, each manufacturer received the opportunity to identify what modifications and/or new design features were incorporated into the "final" prototype design prior to the phase two evaluations. No further design information was provided for this report.

INTRODUCTION

The National Institute for Occupational Safety and Health (NIOSH), a Federal agency located in the Centers for Disease Control and Prevention under the Department of Health and Human Services was established by the Occupational Safety and Health Act of 1970. This legislation mandated NIOSH to conduct research and educational programs separate from the standard setting and enforcement functions conducted by the Occupational Safety and Health Administration (OSHA) in the Department of Labor. An important area of NIOSH research deals with methods for controlling occupational exposure to potential chemical and physical hazards.

The Engineering Control Technology Branch (ECTB) of the Division of Physical Sciences and Engineering (DPSE), has the lead within NIOSH to study and develop engineering controls and assess their impact on reducing occupational illness. Since 1976, ECTB has conducted a large number of studies to evaluate engineering control technology based upon industry, process, or control technique. The objective of each of these studies has been to identify or design engineering control techniques and to evaluate their effectiveness in reducing potential health hazards in an industry or at specific processes. Information on effective control strategies is subsequently published and distributed throughout the affected industry and to the occupational safety and health community.

BACKGROUND

On March 12-15, 1996, researchers from the National Institute for Occupational Safety and Health (NIOSH) conducted an evaluation of a prototype engineering control system at Caterpillar Paving Products, DeKalb, Illinois. The control system was designed for the control of asphalt emissions from the auger area during asphalt paving. The NIOSH researchers included Leroy Mickelsen, Chemical Engineer; Gary Earnest, Industrial Engineer; and Walt Haag, Industrial Engineer; all from the NIOSH Engineering Control Technology Branch (ECTB), Division of Physical Sciences and Engineering (DPSE). The DPSE researchers were primarily assisted by Jim Placiennik, a Caterpillar Design Engineer.

The Caterpillar engineering control system evaluation was completed as part of a Department of Transportation (DOT) project to evaluate the effectiveness of engineering controls on asphalt paving equipment. NIOSH/DPSE researchers are conducting the research through an interagency agreement with DOT's Federal Highway Administration (FHWA). Additionally, the National Asphalt Pavement Association (NAPA) has played a critical role in coordinating the paving manufacturers' voluntary participation in the study. The study consisted of two major phases. During the primary phase, NIOSH researchers visited each participating manufacturer and evaluated their engineering control designs under managed environmental conditions. [General protocols for the indoor evaluations are located in Appendix A. Minor deviations from these protocols may sometimes occur depending upon available time, prototype design, equipment performance, and available facilities.] Results from the phase one evaluations are provided to the

equipment manufacturers along with design change recommendations to maximize engineering control performance prior to the phase two evaluations. The second phase evaluations, which began in mid-1996, include a performance evaluation of the prototype engineering controls under "real-life" conditions at an actual paving site. The results from the Caterpillar phase two evaluation will be published in a separate report.

DESIGN REQUIREMENTS

When designing a ventilation control, the designer must apportion the initial design criteria among three underlying considerations; the level of enclosure, the hood design, and the available control ventilation. When possible, an ideal approach is to maximize the level of enclosure in order to contain the contaminant emissions. With a total or near-total enclosure approach, hood design is less critical, and the required volume of control ventilation is reduced. Many times, worker access or other process requirements limit the amount of enclosure allowed. Under these constraints, the designer must compromise on the level of enclosure and expend increased attention to hood design and control ventilation.

In the absence of a totally enclosed system, the hood design plays a critical role in determining a ventilation control's capture efficiency. Given a specified exhaust flow rate, the hood shape and configuration affect the ventilation control's ability to capture the contaminant, pull it into the hood, and direct it toward the exhaust duct. A well-engineered hood design strives to achieve a uniform velocity profile across the open hood face. When good hood design is combined with proper enclosure techniques, cross-drafts and other airflow disturbances have less of an impact on the ventilation control's capture efficiency.

In addition to process enclosure and hood design, a third area of consideration when designing a ventilation control, is the amount of ventilation air (volumetric flow and/or velocity) required to capture the contaminant and remove it from the working area. For most work processes, the contaminant must be "captured" and directed into the contaminant removal system. For ventilation controls, this is achieved with a moving air stream. The velocity of the moving air stream is often referred to as the capture velocity. In order to maintain a protected environment, the designed capture velocity must be sufficient to overcome process-inherent contaminant velocities, convective currents, cross-drafts, or other potential sources of airflow interference. The minimum required exhaust flow rate (Q) is easily calculated by inputting the desired capture velocity and process geometry information into the design equations specific to the selected hood design. Combining Q with the calculated pressure losses within the exhaust system allows the designer to appropriately select the system's exhaust fan.

For most ventilation controls, including the asphalt paving controls project, these three fundamentals; process enclosure, hood design, and capture velocity are interdependent. A design, which lacks process enclosure, can overcome this shortcoming with good hood design and increased air flow. Alternatively, lower capture velocities may be adequate if increased enclosure and proper hood design techniques are followed. Additional information on designing

ventilation controls can be found in the American Conference of Governmental Industrial Hygienists' (ACGIH) Industrial Ventilation Manual [ACGIH, 6500 Glenway Avenue, Building D-7, Cincinnati, Ohio 45211.]

EVALUATION PROCEDURE

The Caterpillar engineering control phase one evaluation was conducted in a large bay area within a separate research building removed from the manufacturing plant. A large overhead door provided access for the paver to be partially driven into the bay area. The paver was positioned in the doorway so that the screed and rear half of the tractor were within the bay area (referred to as the testing area). The front half of the tractor, the paver engine and its exhaust, and the control system's exhaust were all outside of the building. The overhead door was lowered to rest on top of the tractor, and the remaining doorway openings around the tractor were sealed to isolate the front and rear halves of the paver. During each test run, the engine exhaust and control system exhaust were discharged to the outside of the building. This setup proved very effective at preventing the engine exhaust, engine cooling air, and the captured surrogate contaminants from reentering the testing area.

A theatrical smoke generator produced smoke as a surrogate contaminant. The smoke was released through a perforated distribution tube. The tube placement traversed the width of the auger area between the tractor and the screed and rested on the ground under the augers. Initially, the smoke was used to observe airflow patterns around the paver and to observe capture by the control systems. (The general smoke test protocol is in Appendix A.) This test also helped to identify failures in the integrity of the barrier separating the front and rear portions of the paver. After sealing leaks within this barrier, smoke was again released to identify airflow patterns within the test area and to visually observe the control system's performances.

The second method of evaluation was the tracer gas evaluation. This evaluation was designed to: (1) Calculate the total volumetric exhaust flow of each hood; and (2) Evaluate each hood's effectiveness in controlling and capturing a surrogate contaminant under the "controlled" indoor scenario. Sulfur hexafluoride (SF_6) was the selected tracer gas. At the concentrations generated for these evaluations, SF_6 behaves as a non-toxic, surrogate contaminant which follows the air currents of the ambient air in which it is released. Since SF_6 is not naturally found within ambient environments, it is an excellent tracer gas for studying ventilation system characteristics. The general protocol for the tracer gas evaluation is in Appendix A.

A photo-acoustic infra-red detector (Bruel & Kjaer Model 1302) was calibrated in the NIOSH laboratories prior to the evaluation. Known amounts of reagent grade SF₆ were injected into 12-liter Milar sampling bags and diluted with nitrogen to predetermined concentrations. Five concentrations ranging from 2 to 100 parts per million (ppm) SF₆/nitrogen were generated. A curve was fit to the data and used to convert detector response to SF₆ concentrations. Calibration data are in Appendix B.

To quantify exhaust flow rate, the tracer gas discharge tubes were placed directly into the exhaust ducts of the engineering control system. A known flow rate of SF₆ was released into the duct(s) and the analytical instrument measured the concentration of SF₆ in the control system's exhaust. Measurements were taken downstream of the exhaust fan to allow for thorough mixing of the exhaust air stream. The exhaust flow rate was calculated using the following equation:

$$Q_{(exh)} = \frac{Q_{(SF_6)}}{C_{(SF_6)}^*} \times 10^6$$
 Equation 1

where:

 $\mathbf{Q}_{(exh)}$ = flow rate of air exhausted through the ventilation system (lpm or cfm)

 $\mathbf{Q}_{(SF_6)}$ = flow rate of SF₆ (lpm or cfm) introduced into the system

 $C^*_{(SF_6)}$ = concentration of SF₆ (parts per million) detected in exhaust. And the indicates 100 percent capture of the released SF₆

[To convert from liters per minute (lpm) to cubic feet per minute (cfm), divide lpm by 28.3.]

To quantify capture efficiency, we released the SF_6 through distribution plenums. Each discharge hose fed from the SF_6 regulator, through a mass flow controller, and into a T-shaped distribution plenum. Each plenum was approximately 4' wide and designed to release the SF_6 evenly throughout its width. During the capture efficiency test, we placed the discharge plenums within the auger area between the paving tractor and the screed. A known quantity of SF_6 slowly discharged through the plenums into the auger area. A direct-reading analytical instrument measured the concentration of the tracer gas in the exhaust on the discharge side of the control. The capture efficiency was calculated using the following equation:

$$\frac{C_{(SF_6)} \times Q_{(exh)}}{10^6}$$

$$\frac{Q_{(SF_6)}}{Q_{(SF_6)}}$$
Equation 2A

where:

 η = capture efficiency

 $C_{(SF6)}$ = concentration of SF_6 (parts per million) detected in exhaust

 $\mathbf{Q}_{(exh)}$ = flow rate of air exhausted through the ventilation system (lpm or cfm)

 $\mathbf{Q}_{(SF6)}$ = flow rate of SF₆ (lpm or cfm) introduced into the system

[To convert from liters per minute (lpm) to cubic feet per minute (cfm), divide lpm by 28.3.]

NOTE: When the flow rate of $SF_6[Q_{(SF6)}]$ used to determine the engineering control's capture efficiency is the same as that used to quantify the exhaust flow rate, equation 2A may be simplified to:

$$\eta = \frac{C_{(SF_6)}}{C_{(SF_6)}^*} \times 100$$
 Equation 2B

where the definitions for $C^*_{(SF6)}$, η , and $C_{(SF6)}$ remain the same as in equations 1 and 2A.

Both flow rate and capture efficiency tests were repeated. The paver was shut down and background SF₆ measurements taken between trials. The exhaust flow rate of the control system was evaluated at two different paver idle speeds to determine its effect.

Since the Caterpillar engineering control design was tested using two different exhaust fans, the most effective system-fan combination, as determined by the indoor evaluation, was selected for further evaluation outdoors with the paver positioned in prescribed stationary orientations. The paver was randomly oriented in four different directions relative to the prevailing wind. Wind velocity measurements were taken, as well as exhaust flow rates and capture efficiency, during the outdoor evaluations. The outdoor stationary evaluation provided feedback on the sufficiency of the engineering control's hood enclosure for performance in an outdoor environment.

EQUIPMENT

(See Appendix A)

ENGINEERING CONTROL DESIGN DESCRIPTION

The Caterpillar asphalt paving engineering control was a local exhaust ventilation system with no additional enclosures around the auger area. It consisted of a hood, duct, fan, and exhaust stack. The local exhaust ventilation system was designed and installed by engineers at Caterpillar. The control system was retrofitted to a Caterpillar Paver Model AP-1050 with an Extend-o-mat screed no. 10-20B. The hood was located on the rear of the tractor, centered over the auger's drive train, and above the auger. The hood was approximately 6.5' wide. It extended approximately 13" past the rear of the tractor and then curved downward for approximately 6". The hood's size and position created a partial enclosure over the area where hot mix asphalt is delivered to the screw augers. Caterpillar engineers noted that during the asphalt paving process, workers prefer an unobstructed view into the auger area.

The hood was connected to a duct which ran horizontally from the auger to the fan. The cross sectional area of the entire duct was 72.5 square inches (1.25" by 58"). It was located directly above the slat conveyors. The slat conveyors are used to transport asphalt from the hopper (on the front of the paver) to the augers (on the rear of the paver). The duct was connected to the fan inlet. The fan was a high volume, direct drive, centrifugal blower that was manufactured by the Dayton Electric Manufacturing Company. The fan was located under the tractor deck next to the engine. Two different fans were used in this system during the survey. Initially, a 1.0 horsepower (hp) fan that operated at approximately 1,725 revolutions per minute (rpm) was used. During the second day of the study, a 1.5 hp fan, operating at the same rpm, was installed and evaluated.

The hydraulic fan motor was connected to a regulating valve feeding off of the tractor's hydraulic system. This valve enabled the fan to run at a relatively constant fan speed, independent of the engine idle speed. The fan exhausted to the atmosphere through an 8" diameter duct located just behind the main engine exhaust stack. The fan exhaust stack extended approximately 6' above the paver deck.

DATA RESULTS

Smoke Evaluations

The smoke test evaluation provided only qualitative information. After verifying the integrity of the separating barrier, smoke was re-released to identify airflow patterns within the test area and to visually observe the control system's performance. This information assisted the researchers in preparing the test area for the quantitative tracer gas evaluation.

Tracer Gas Evaluation

(A copy of the tracer gas evaluation data files and associated calculations are included in Appendix B.)

The calibration data from the B&K was used to convert the instrument's response to the actual SF₆ concentration in sampled air. The following equation was derived from calibration data ranging from 0 to 60 ppm in Appendix B:

$$SF_6$$
 Concentration = 403 - $\sqrt{162,403}$ - 844*Response

Where: Response = the B&K detector response (ppm)

Evaluations conducted indoors are considered controlled conditions. Building pressure fluctuations and air currents from moving people or equipment are considered insignificant compared to outdoor conditions. The results are reported in Tables I and II in terms of an average and a range of the 6 to 10 measurements for each run. Multiple tests were performed for each fan resulting in an average exhaust flow rate of 1,120 cfm for the 1.0 hp fan and 1,350 cfm for the 1.5 hp fan. The average indoor capture efficiency was 72 percent with the 1.0 hp fan and 95 percent with the 1.5 hp fan. For comparison purposes, a pitot tube traverse of the ventilation system's exhaust duct resulted in a calculated average flow rate of 1,280 cfm for the 1.0 hp fan and 1,400 cfm for the 1.5 hp fan. The air velocity at the face of the hood ranged from 110 to 150 fpm.

The outdoor evaluation occurred in a parking area. There were some large trucks in an adjacent lot which may have partially obstructed the wind. Wind gusted from 5 to 10 miles per hour (mph) with most readings averaging approximately 6 mph. Wind velocities were measured with a hot-wire anemometer held by researchers standing on top of the paver deck. The paver was oriented so that each paver profile (front, back, left-side, right-side) faced into the wind for three tests. The sequence of orientations were randomized in blocks of four. Only the 1.5 hp fan was tested outdoors. The outdoor evaluations revealed an overall average capture efficiency of 68 percent. Compared to the indoor evaluation, the outdoor results showed a 27 percentage point decline in capture efficiency and increased variation in results as wind gusts hampered the control's ability to consistently capture the surrogate contaminant. The outdoor exhaust flow rate averaged 1,370 cfm.

TABLE I. EXHAUST FLOW RATE TRIALS

	$\mathbf{Q}_{(\mathrm{SF6})}$	Q _(exh) (Range)	Q _(exh) (Average)
1.0 hp fan, Indoor 1a	0.569 lpm	1,103 - 1,116 cfm	1,111 cfm
1.0 hp fan, Indoor 1b	1.132 lpm	1,133 - 1,148 cfm	1,139 cfm
1.0 hp fan, Indoor 2a	0.569 lpm	1,090 - 1,109 cfm	1,100 cfm
1.0 hp fan, Indoor 2b*	0.569 lpm	1,096 - 1,109 cfin	1,103 cfm
1.0 hp fan, Indoor 3a* 🚟	1.132 lpm 🚁	1,141 - 1,152 cfm	1,147 cfm
1.5 hp fan, Indoor 1a	0.566 lpm	1,328 - 1,358 cfm	1,342 cfm
1.5 hp fan, Indoor 1b	1.124 lpm	1,357 - 1,367 cfm	1,360 cfm
1.5 hp fan, Outdoor 1a	⁺ 0.566 lpm	1,367 - 1,384 cfm	1,375 cfm
1.5 hp fan, Outdoor 1b	1.124 lpm	1,357 - 1,367 cfm	

⁻ The annotations "a" and "b" are for different SF₆ flow rates during the same test run.

^{*} Engine idle was reduced from 1675 rpms to 800 rpms for two trials.

TABLE II. INDOOR CAPTURE EFFICIENCY TRIALS

	$Q_{(sf6)}$	Q _(exh)	η (Range)	η (Average)
1.0 hp fan, Indoor 1a	0.569* cfm	1,105 cfm	36 - 88 %	64 %
1.0 hp fan, Indoor 1b	1.132	1,143	54 - 105 %	72 %
1.5 hp fan, Indoor 1a	0.566*	1,342	54 - 98 %	82 %
1.5 hp fan, Indoor 1b	:1.124	1,360		95 %

⁻ The annotations "a" and "b" are for different SF₆ flow rates during the same test run.

TABLE III. OUTDOOR TRIALS, 1.5 hp FAN ONLY FRONT OF PAVER FACING THE WIND = ZERO DEGREES

Orientation/Run	$\mathbf{Q}_{(\mathrm{SF6})}$	η(Range)	η(Average)	Wind
0°, Run 1	1.124 lpm	57 100 %	83 %	5 - 8 mph
270°, Run 1	1.124	30 - 97 %	51 %	5 - 8
180°, Run 1	1.124	24 - 108 %	56 %	7 - 8
90°, Run 1	1.124	51 - 93 %	73 %	3 - 9
180°, Run 2	1,124	31 - 101 %	61 %	8-12
90°, Run 2	1.124	36 - 95 %	64 %	2 - 5
. 0°, Run 2	-1.124	68 - 101 %	88 %	3 - 8
270°, Run 2	1.124	29 - 75 %	57 %	2 - 10
180°, Run 3	. 1.124	70 - 100 %	89 %	3 - 5
90°, Run 3	1.124	47 - 119 %	73 %	1 - 6
270°, Run 3	1.124	27 -72 %	44 %	5-8.
0°, Run 3	1.124	59 - 89 %	76 %	3 - 9

 $[\]eta$ = Capture efficiency

DISCUSSION

The control system flow rate calculations for the two methods, the SF_6 dilution technique and the velocity pressure technique, where within 5 percent of one another. For the indoor evaluation of the 1.0 hp fan, there seemed to be a systematic difference in the flow rates calculated using flow of 0.6 lpm SF_6 (1,105 cfm) verses a flow of 1.1 lpm SF_6 (1,143 cfm). This systematic difference

^{*} SF6 released only on the right side of the auger area.

is about 3.5 percent and is probably due to low accuracy in one of the SF_6 delivery flow rate calibrations during the first day. Before testing the 1.5 hp fan, a new calibration was done for the SF_6 delivery system. On the second day, the exhaust flow rate calculated for the 0.6 lpm SF_6 (1,342 cfm) test run was only 1 percent less than the exhaust flow rate for the 1.1 lpm SF_6 (1,360 cfm) test run. These differences are small when compared to the outdoor wind effect on the capture efficiency.

The 1.5 hp fan had a 20 percent increase in flow over the 1.0 hp fan. The larger fan also increased the system's capture efficiency by 23 percent, based on the indoor sampling. The 1.5 hp fan drew the same amount of air when tested outdoors as when tested indoors; however, the capture efficiency decreased by 27 percent. In addition, the variance of the samples increased during the outdoor tests. Achieving a high average capture efficiency and maintaining high capture efficiencies without performance levels fluctuating over a wide range is desired. Empirically, the performance can be evaluated by comparing the sampling data coefficients of variation (CV).

$$CV = \frac{Standard\ deviation}{Mean} \ X \ 100$$

Controls with smaller CVs are less influenced by the environmental factors and maintained a more consistent capture efficiency. For example, the CVs obtained during indoor testing of the 1.5 hp fan were all less than 20 percent as compared to several CVs greater than 50 percent obtained while testing outdoors. The CVs for each set of data are shown in Appendix B.

CONCLUSIONS, DISCUSSION, AND RECOMMENDATIONS

Based on the evaluation results of this report, the Caterpillar control design, when paired with the larger 1.5 hp fan, has a reasonable potential to significantly reduce worker exposure. The wind speed, asphalt fume emission rate, work habits of individuals, and other factors will effect the actual reductions in worker exposure. For example, if the wind speed is very high (15 mph range), asphalt emissions may be naturally removed from the auger area, reducing the relative effectiveness of the control system. On the other hand, if the wind speed is very low (<1 mph), the wind may not remove a significant amount of asphalt emissions from the auger area. In the low wind case, the ventilation system is expected (based on indoor testing where the wind was minimal) to remove a large percentage of the asphalt emissions, thus, the relative effectiveness of the control system will be high.

Some general recommendations for further improvements to the design follow: The evaluated Caterpillar local exhaust ventilation system included: enclosure, hood design, and mechanical exhaust. The enclosure covered about 60 percent of the area over the augers. Caterpillar engineers expressed concerned that covering any more of this area would obstruct the view of the operator and hamper production. Any additional enclosure techniques, especially above the ends

of the auger and the screed extension areas, could increase capture efficiency, increase resistance to cross-draft disturbances, and reduce worker exposure. However, user acceptance must still be a consideration. If the auger area cannot be enclosed any further, then improvements to the hood design and an increase in the exhaust flow rate could be made.

The hood design, including the duct to hood transition and the duct to fan transition, required improvement. Although difficult to measure on this system, significant pressure losses were expected at the hood-to-duct and the duct-to-fan transitions. Smooth (gradual) transition at these transitions would increase the exhaust flow rate of the system. In addition, the short duct height also contributed to increased pressure loss due to the large surface area to cross-sectional area ratio. Re-sizing this duct could reduce frictional losses and increase the exhaust flow rate of the system.

With the 1.5 hp fan, the ventilation system's exhaust flow rate was 1,400 cfm and air velocity measurements taken at the face of the hood ranged from 110 to 150 fpm. The air velocities decreased quickly with distance from the face of the hood. At a minimum, given the physical properties of the asphalt fume, the vapor contaminants, and the process by which they are generated, we recommend a minimum design capture velocity of 100' per minute throughout the entire auger area. This recommendation assumes very good enclosure to minimize wind interference during paving operations. Based upon the selected hood design and the dimensions of the auger area, this velocity will be incorporated into the design calculations to determine a minimum exhaust flow rate requirement. There is some concern regarding convective currents and the generated volume of rising air induced above the hot paving process. However, adequate process enclosure plus an appropriately selected capture velocity will produce a sufficient exhaust flow rate to control and remove this convective exhaust volume. Additional information on controlling contaminants from hot processes may also be found in the ACGIH Ventilation Manual.

ACKNOWLEDGMENTS

We would like to thank the Caterpillar management and staff for their gracious hospitality and assistance during our visit to the Caterpillar Paving Products facility. Their commitment to the design and implementation of engineering controls to reduce occupational exposures is an admirable pledge. We would like to thank Walt Haag for his contribution on the field survey.

APPENDIX A

ENGINEERING CONTROLS FOR ASPHALT PAVING EQUIPMENT

PHASE ONE (LABORATORY) EVALUATION PROTOCOL

PURPOSE: To evaluate the efficiency of ventilation engineering controls used on highway-class hot mix asphalt (HMA) pavers in an indoor stationary environment.

SCOPE OF USE: This test procedure was developed to aid the HMA industry in the development and evaluation of prototype ventilation engineering controls with an ultimate goal of reducing worker exposures to asphalt fumes. This test procedure is a first step in evaluating the capture efficiency of paver ventilation systems and is conducted in a controlled environment. The test is not meant to simulate actual paving conditions. The data generated using this test procedure have not been correlated to exposure reductions during actual paving operations.

For the laboratory evaluation, we will conduct a two-part experiment where the surrogate "contaminant" is injected into the auger region behind the tractor and in front of the screed. For part A of the evaluation, smoke from a smoke generator is the surrogate contaminant. For part B, the surrogate contaminant is sulfur hexafluoride, an inert and relatively safe (when properly used) gas, commonly used in tracer gas studies.

SAFETY: In addition to following the safety procedures established by the host facility, the following concerns should be addressed at each testing site:

- 1. The discharge of the smoke generating equipment can be hot and should not be handled with unprotected hands.
- 2. The host may want to contact building and local fire officials in order that the smoke generators do not set off fire sprinklers or create a false alarm.
- 3. In higher concentrations, smoke generated from the smoke generators may act as an irritant. Direct inhalation of smoke from the smoke generators should be avoided.
- 4. All compressed gas cylinders should be transported, handled, and stored in accordance with the safety recommendations of the Compressed Gas Association.
- 5. The Threshold Limit Value for sulfur hexafluoride is 1000 ppm. While the generated concentrations will be below this level, the concentration in the cylinder is near 100 percent. For this reason, the compressed cylinder will be maintained outdoors whenever possible. Should a regulator malfunction or some other major accidental release occur, observers should stand back and let the tank pressure come to equilibrium with the ambient environment.

<u>Laboratory Setup</u>: The following laboratory setup description is based on our understanding of the facilities available at the asphalt paving manufacturing facilities participating in the study. The laboratory evaluation protocol may vary slightly from location to location depending upon the available facilities.

<u>Paver Position</u>: The paving tractor, with screed attached, will be parked underneath an overhead garage door such that both the tractor exhaust and the exhaust from the engineering controls exits into the ambient air. The garage door will be lowered to rest on top of the tractor and plastic or

an alternative barrier will be applied around the perimeter of the tractor to seal the remainder of the garage door opening.

Laboratory Ventilation Exhaust: For this evaluation, smoke generated from Rosco Smoke Generators (Rosco, Port Chester, NY) is released into a perforated plenum and dispersed in a quasi-uniform distribution along the length of the augers. Due to interferences created by the auger's gear box, this evaluation may require a separate smoke generator and distribution plenum on each side of the auger region. Releasing theatrical smoke as a surrogate contaminant within the auger region provides excellent qualitative information concerning the engineering control's performance. Areas of diminished control performance are easily determined and minor modifications can be incorporated into the design prior to quantifying the control performance. Additionally, the theatrical smoke helps to verify the barrier integrity separating the front and rear halves of the asphalt paver. A video camera will be used to record the evaluation. The sequence from a typical test run is outlined below:

- 1. Position paving equipment within door opening and lower overhead door.
- 2. Seal the remaining door opening around the tractor.
- 3. Place the smoke distribution tube(s) directly underneath the auger.
- 4. Connect the smoke generator(s) to the distribution tube(s).
- 5. Activate video camera, the engineering controls, and the smoke generator(s).
- 6. Inspect the separating barrier for integrity failures and correct as required.
- 7. Inspect the engineering control and exhaust system for unintended leaks.
- 8. Deactivate the engineering controls for comparison purposes.
- 9. Deactivate smoke generators and wait for smoke levels to subside.
- 10. End the smoke test evaluation.

Evaluation Part B (Tracer Gas): The tracer gas test is designed to: (1) Calculate the total exhaust flow rate of the paver ventilation control system; and (2) Evaluate the effectiveness in capturing and controlling a surrogate contaminant under a "controlled" indoor conditions. SF₆ will be used as the surrogate contaminant.

Quantify Exhaust Volume: To determine the total exhaust flow rate of the engineering control, a known quantity of sulfur hexafluoride (SF₆) is released directly into the engineering control's exhaust hood, thus creating a 100 percent capture condition. The SF₆ release is controlled by two Tylan Mass Flow controllers (Tylan, Inc., San Diego, CA). Initially, the test will be performed with using a single flow controller calibrated at 0.35 lpm. A hole drilled into the engineering control's exhaust duct allows access for a multi-point monitoring wand into the exhaust stream. The monitoring wand is oriented such that the perforations are perpendicular to the moving air stream. A sample tube connects the wand to a Bruel & Kjaer (B&K) Model 1302 Photo acoustic Infra-red Multi-gas Monitor (California Analytical Instruments, Inc., Orange, CA) positioned on the exterior side of the overhead door. The gas monitor analyzes the air sample and records the concentration of SF₆ within the exhaust stream. The B&K 1302 will be programmed to repeat this analysis approximately once every 30 seconds. Monitoring will continue until we

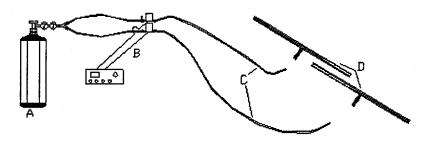
approximate steady-state conditions are achieved. The mean concentration of SF_6 measured in the exhaust stream will be used to calculate the total exhaust flow rate of the engineering control. The equation for determining the exhaust flow rate is:

$$Q_{(exh)} = \frac{Q_{(SF_6)}}{C_{(SF_6)}^*} \times 10^6$$
 Equation 1

where:

 $\mathbf{Q}_{(exh)}$ = flow rate of air exhausted through the ventilation system (lpm or cfm)

 $\mathbf{Q}_{(SF6)}$ = flow rate of SF₆ (lpm or cfm) introduced into the system


 $C^*_{(SF6)}$ = concentration of SF_6 (parts per million) detected in exhaust

[To convert from liters per minute (lpm) to cubic feet per minute (cfm), divide lpm by 28.3.]

In order to increase accuracy, the exhaust flow rate will be calculated a second time using two mass flow controllers, each calibrated at approximately 0.35 lpm of SF₆. Sufficient time will be allowed between all test runs to allow area concentrations to decay below 0.1 ppm before starting subsequent test runs.

Quantitative Capture Efficiency: The test procedure to determine capture efficiency is slightly different than the exhaust volume procedure. The mass flow controllers will each be calibrated for a flow rate approximating 0.35 liters per minute (lpm) of 99.8 percent SF_6 . The discharge tubes from the mass flow controllers will each feed a separate distribution plenum, one per side, within the paver's auger area. The distribution plenums are designed to distribute the SF_6 in a uniform pattern along the length of the auger area. (See Figure 1.) The B&K multi-gas monitor analyzes the air sample and records the concentration of SF_6 within the exhaust stream until approximate steady-state conditions develop. Once this occurs, the SF_6 source will be discontinued and the decay concentration of SF_6 within the exhaust stream will be monitored to indicate the extent in which general area concentrations of non-captured SF_6 contributed to the concentration measured in the exhaust stream.

FIGURE 1

LEGEND

A-Trocer Gos Cylinder with regulator

B-Tylon Mass Flow Controllers with Control Box

C-PTFE Distribution Tubes

D-Tracer Gas Distribution Plenums

A capture efficiency can be calculated for the control using the following equation:

$$\eta = 100 \times \frac{\frac{C_{(SF_6)} \times Q_{(exh)}}{10^6}}{Q_{(SF_6)}}$$
 Equation 2A

where:

 η = capture efficiency

 $C_{(SF6)}$ = concentration of SF_6 (parts per million) detected in exhaust

 $\mathbf{Q}_{(exh)}$ = flow rate of air exhausted through the ventilation system (lpm or cfm)

 $\mathbf{Q}_{(SF6)}$ = flow rate of SF₆ (lpm or cfm) introduced into the system

[To convert from liters per minute (lpm) to cubic feet per minute (cfm), divide lpm by 28.3.]

NOTE: When the flow rate of $SF_6[Q_{(SF6)}]$ used to determine the engineering control's capture efficiency is the same as that used to quantify the exhaust flow rate, equation 2A may be simplified to:

$$\eta = \frac{C_{(SF_6)}}{C_{(SF_6)}^*} \times 100$$
 Equation 2B

where the definitions for $C^*_{(SF6)}$, η , and $C_{(SF6)}$ remain the same as in equations 1 and 2A.

The sequence from a typical test run is outlined below:

- 1. Position paving equipment and seal openings as outlined above.
- 2. Calibrate (outdoors) both mass flow meters at approximately 0.35 lpm of SF₆.
- 3. Drill an access hole in the engineering control's exhaust duct on the outdoor side of the overhead door, and position the sampling wand into the hole.
- 4. While maintaining the SF₆ tanks outdoors, run the discharge hoses from the mass flow meters to well-within the exhaust hood(s) to create 100 percent capture conditions.
- 5. With the engineering controls activated, begin monitoring with the B&K 1302 to determine background interference levels.
- 6. Initiate flow of SF₆ through a single mass flow meter.
- 7. Continue monitoring with the B&K for five minutes or until three repetitive readings are recorded.
- 8. Deactivate flow of the SF₆ and calculate exhaust flow rate using the calculation identified above.
- 9. Repeat steps #2 through #8 using both mass flow controllers.
- 10. Allow engineering control exhaust system to continue running until SF₆ has ceased leaking from the discharge hoses then remove the hoses from the hoods.
- 11. End the exhaust flow rate test.
- 12. Locate an SF₆ distribution plenum on each side of the auger area and connect each plenum to the discharge hose of a mass flow meter.
- 13. Initiate B&K monitoring to establish background interference levels until levels reach 0.1 ppm or below.
- 14. Initiate SF₆ flow through the mass flow meters and monitor with the B&K until approximate steady-state conditions appear.
- 15. Once steady-state is achieved, discontinue SF₆ flow and quickly remove the distribution plenums and discharge hoses from the auger area.
- 16. Continue monitoring with the B&K to determine the general area concentration of SF₆ which escaped auger area into the laboratory area.
- 17. Discontinue B&K monitoring when concentration decay is complete.
- 18. Calculate the capture efficiency.
- 19. Repeat steps 11 18 as time permits.

APPENDIX B

ENGINEERING CONTROLS FOR ASPHALT PAVING EQUIPMENT

TRACER GAS EVALUATION RESULTS B&K DATA FILES AND CALCULATION RESULTS

Barber-Greene	(CAT)	DeKalb.	Illinois	3/12	-15/199	6	-
		Summar		<u> </u>	1	Γ	
		Carringa	y Table	 			
INDOOR, SMALL FAI	v			Range	<u> </u>	<u> </u>	- <u>-</u>
Flow rate #1;	1111	cfm	1103		1116	cfm	` ———
Flow rate #2:	1139		1133		1148		-
Flow rate #3:	1100	·	1090		1109		:
Flow rate #4:*	1103		1096			cfm .	
Flow rate #5:*	1147		1141		1152		+
		ced from 16	75 mm to 8	00 rpm	1 1102	-	+
		! '			<u>.</u>	 	
Capture efficiency, Rt	only:	64%	36%	to	88%	-	
Capture efficiency, Fu		72%			105%		
		!			1	i	
INDOOR, LARGE FAI	<u>v</u>		4				
Flow rate #1:	1342	cfm	1328	to	1358	cfm	1
Flow rate #2:	1360	cfm :	1357	to	1367		1
		1				i	1
Capture efficiency, Rt	only:	82%	54%	to	98%		i
Capture efficiency, Ful	1:	95%	74%	to	107%		1
					İ		*
OUTDOOR, LARGE F	AN	:	i	_			i
Flow rate #1:	1375	cfm i	1367	to	1384	cfm	•
Flow rate #2:	1361	cfm	1357	to	1367	cfm	
	7				1	<u></u> !	Wind Speed
OUTDOOR, LARGE F	AN, WIND	FROM FRO	NT TO BA	CK OF	PAVER	i	mph
Capture efficiency, Rt		83%	71%		107%		5 - 7
Capture efficiency, Ful	l, #1:	83%	57%	to	100%		
Capture efficiency, Rt (only, #2:	75%	60%	to	92%		3 - 8
Capture efficiency, Ful	1, #2:	88%	68%	to	101%		:
Capture efficiency, Rt	only, #3:	81%	70%	to	86%	 	3 - 9
Capture efficiency, Ful	l, #3:	76%	59%:	to	89%		
		,					:
OUTDOOR, LARGE F				TOF	PAVER		:
Capture efficiency, Rt (5 5%	28%	to	92%		5 -8
Capture efficiency, Ful		51%	30%		97%		!
Capture efficiency, Rt of		76%			97%		2-5
Capture efficiency, Ful		57%	29%		75%		:
Capture efficiency, Rt o		65%	52%;	to	86%		1-6
Capture efficiency, Ful	i, #3: :	44%	27%;	to	72%	<u> </u>	<u>i</u> .
	!						1
OUTDOOR, LARGE F							
Capture efficiency, Rt o		63%.	40%	to	118%		7-8
Capture efficiency, Full		56%	24%;	to	108%		
Capture efficiency, Rt o		69%	30%	to	108%		8 - 12
Capture efficiency, Full		61%	31%	to	101%		
Capture efficiency, Rt o		90%	64%	to	113%		3-5
Capture efficiency, Full	, #3:	89%	70%	to	100%	·	
OUTDOOD		<u> </u>	T T C 5:5:	T 6			<u>i</u>
OUTDOOR, LARGE F.							
Capture efficiency, Rt o		65%	29%		102%		3 -9
Capture efficiency, Full		73%	51%	to	93%		
Capture efficiency, Rt o		67%	40%	to	143%		2 - 10
Capture efficiency, Full		64%	36%	to	95%		
Capture efficiency, Rt c		64%	48%	to	83%		5-8
Capture efficiency, Full	, #3:	73%	47%	to	119%		į

	ois 3/12-15/1			
Small Fan,	Screed i	nside, engine d	outside	
- 1302 Measurement Data	a 1804892/2	803 - 1996-03-13 14:4	9 - Page 1 -	. :
1302 Settings:	<u> </u>	1		

	1 :			
Compensate for Water Va	ap. Interference :	NO		
Compensate for Cross Int		NO		
Sample Continuously	•	YES		
Pre-set Monitoring Period	j :	NO		
		<u>.</u>		
Measure				
Gas A: Formaldehyde	- •	NO :		
Gas B: Carbon dioxide	:	NO !		
Gas C: Carbon monoxide	;	NO		
Gas D: TOC as Propane	•	NO :		
Gas E: Sulfur hexafluorid		YES		<u> </u>
Water Vapour		NO ;	<u> </u>	
			:	•
Sampling Tube Length	<u> </u>	15.0 ft		
Air Pressure	: 760	.0 mmHg		
Normalization Temperatu	ıre :	54.0 F	L	<u> </u>
General Information:		:	 	
Olast Time	: 1996-03-13	44.20	: !	
Start Time	: 1996-03-13			
Stop Time Results Not Averaged	. 1950-03-1	3 13.13		
Number of Event Marks	•	15		
Number of Recorded Sar	mnles :	157		:
Number of Recorded Sar	Tiples .			
#	4000 00 40 44 01		'	
Samples Measured From	1 7 4 4 4 7 7 4 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7	4	. :	j
Samples Measured From	1 1996-03-13 11:38	<u> </u>		<u> </u>
amp. Time	'Response (Calibration		
amp. Time	'Response (
samp. Time lo. hh:mm:ss Even	Response (Calibration Correction	nd. in exhaus	t stack
Samp. Time lo. hh:mm:ss Even	Response (PPM (Calibration Correction 0.077999 Backgrou	nd, in exhaus	t stack
tamp. Time lo. hh:mm:ss Even 1: 11:39:29 . 2: 11:40:12 .	Response (PPM : 7.12E-02 : 3.23E-02	Calibration Correction 0.077999 Backgrou 0.037264	nd, in exhaus	t stack
Samp. Time lo. hh:mm:ss Even 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 .	Response (11 PPM (2 7.12E-02 (2 3.23E-02 (3.71E-02 (Calibration Correction 0.077999 Backgrou 0.037264 0.04229	nd, in exhaus	t stack
Time lo. hh:mm:ss Even 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 . 4: 11:41:43 .	Response (11 PPM (2 7.12E-02 (3.23E-02 (3.71E-02 (4.12E-02 (0.077999 Backgrou 0.037264 0.046584 Avg.	·	t stack
Time 10. hh:mm:ss Even 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 . 4: 11:41:43 . 5: 11:42:18 .	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 3.75E-02	D.04229 0.042709 Std. Dev.	0.040385	t stack
Time 1: 11:39:29 2: 11:40:12 3: 11:40:48 4: 11:41:43 5: 11:42:18 6: 11:42:53	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 3.75E-02	0.077999 Backgrou 0.037264 0.046584 Avg.	0.040385 0.005259	t stack
Time 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 . 4: 11:41:43 . 5: 11:42:18 . 6: 11:42:53 . 11:43:29 User	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 3.75E-02 2.83E-02	0.077999 Backgrou 0.037264 0.04229 0.046584 Avg. 0.042709 Std. Dev. 0.033076	0.040385 0.005259 13.02%	
Time 10. hh:mm:ss Even 1 11:39:29 2 11:40:12 3 11:40:48 4 11:41:43 5 11:42:18 6 11:42:53 11:43:29 User 7 11:43:29	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 2.83E-02 1 3.09E-02	0.077999 Backgrou 0.037264 0.04229 0.046584 Avg. 0.042709 Std. Dev. 0.035798 Backgrou	0.040385 0.005259 13.02%	
Samp. Time 10. hh:mm:ss Even 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 . 4: 11:41:43 . 5: 11:42:18 . 6: 11:42:53 . 11:43:29 User 7: 11:43:29 . 8: 11:44:04 .	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 3.75E-02 2.83E-02 1 3.09E-02 2.91E-02	0.077999 Backgrou 0.037264 0.04229 0.046584 Avg. 0.042709 Std. Dev. 0.035798 Backgrou 0.033914 Avg.	0.040385 0.005259 13.02%	
Samp. Time 10. hh:mm:ss Even 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 . 4: 11:41:43 . 5: 11:42:18 . 6: 11:42:53 . 11:43:29 User 7: 11:43:29 . 8: 11:44:04 . 9: 11:44:40 .	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 3.75E-02 2.83E-02 1 3.09E-02 2.91E-02 2.21E-02	Dalibration Correction 0.077999 Backgrou 0.037264 0.04229 0.046584 Avg. 0.042709 Std. Dev. 0.033076 CV 0.035798 Backgrou 0.033914 Avg. 0.026584 Std. Dev.	0.040385 0.005259 13.02% nd, outside of	
Time 1: 11:39:29 . 2: 11:40:12 . 3: 11:40:48 . 4: 11:41:43 . 5: 11:42:18 . 6: 11:42:53 . 11:43:29 User 7: 11:43:29 . 8: 11:44:04 .	Response (7.12E-02 3.23E-02 3.71E-02 4.12E-02 3.75E-02 2.83E-02 1 3.09E-02 2.91E-02 2.21E-02	0.077999 Backgrou 0.037264 0.04229 0.046584 Avg. 0.042709 Std. Dev. 0.035798 Backgrou 0.033914 Avg.	0.040385 0.005259 13.02% nd, outside of 0.032301 0.003469	

12: 11:46:26 .	3.26E-02			1	:	
13: 11:47:01;.		0.049725				1
14: 11:47:37 .	4.58E-02	0.0514			i	
15 11:48:12 .	3.35E-02	0.038521			:	
16 11:48:48 .	3.82E-02					
17 11:49:23	4.74E-02			<u>. </u>	i -	
18 11:49:59 .	3.66E-02	0.041767		<u> </u>	 	! -
19 11:50:34 .	3.99E-02			0.044406	!	!
20, 11:51:20.	3.60E-02	D D41120	Std Dov	0.044400	:	
21 11:51:56	3.70E-02	0.041(38	CV			
11:52:32 User	3	U.U42100	CV	12.05%	<u> </u>	
22 11:52:32	2.62E-02	0.020977	Bookesou	ad in auto	l atask	
23 11:53:07	3.59E-02	0.030677	Backgroui	na, in exna	UST STACK	
24 11:53:42	3.47E-02				<u> </u>	!
25 11:54:18		0.039/11			!	<u> </u>
26 11:54:53					<u>i</u>	i
27 11:55:29 .						:
	2.52E-02	U.U2983				· •
28 11:56:04	2.73E-02	0.032029			:	<u>i</u>
29 11:56:40 . 30 11:57:15 .	2.76E-02				SF6 flow	rates
30 11:57:15 .	3.18E-02		•		Rt side	
31 11:57:50 .	3.44E-02				0.569	
32 11:58:26	2.78E-02	, 7	·		Both sides	
33 11:59:01 .					1.1319	lpm
34 11:59:37 .						•
35 12:00:12	3.76E-02					į
36 12:00:47 .	3.16E-02	0.036531	Std. Dev.	0.004436		
37 12:01:54 .	3.03E-02	0.03517	CV	12.09%		1
12:02:29 User	4					•
38 12:02:29 .	2.16E+01	23.29192	Rt side on	y SF6 100	% capture	
39 12:03:10 .	1.69E+01	18.10455				·
40 12:03:45 .	1.69E+01	18.10455	i	1		i
41 12:04:21 .	1.68E+01					
42 12:04:56	1.70E+01	18.21419	Avg.	18.08629	1110.549	Mean flow
43 12:05:32;.	1.68E+01	17.99494	Std. Dev.	0.082521	1102.75	Min
44, 12:06:07.			CV		1116.186	
12:06:43 User	5			3.1070	1110.100	10102
45 12:06:43 .	1.86E+01	19.97272	Both sides	SF6 100%	canture	
46 12:07:18 .					capture	
47: 12:07:53 .	3.20E+01	•		<u></u>		
48 12:08:29 .	3.20E+01					
49 12:09:04	3.21E+01		<u>_</u>			
50 12:09:40	3.21E+01		Avo !	35 07036	1139.019	Maan flour
51 12:10:15	3.21E+01				1133.197	
52 12:10:50	3.22E+01					
53 12:11:45			1	0.42%	1148.133	XEIVI
12:12:23 User	6:	10.33320		<u>!</u>		
54: 12:12:23 .		0.00024	Paskers:-	 		
	9.05E-02		Backgroun	a, inside g	arage	
	4.94E-02		ST0 011			
56, 12:13:36 .	4.17E-02		- !	····································		
57, 12:14:12 .	3.99E-02			·		
58 12:14:47 .	4.25E-02	U.047945			-	

59	12:15:22:.	3.83E-02	0.042547				
60	12:15:58 .	4.07E-02			0.049333		:
					0.048233		
61	12:16:33	3.90E-02					
62 12:17:44	12:17:09	5.07E-02	0.05551	CV	10.21%		ļ
		7:	0.045507		1		
63	12:17:44	. 4.02E-02		<u>i </u>			
64:	12:18:20	1.71E+01	18.32386				
12:19:00		8					
	12:19:00 .				ly SF6 100°		:
66	12:19:35				@ 1675 rpi		
	12:20:11 .				18.25807		Mean flow
68	12:20:46	: 1.71E+01					
69	12:21:33 .	1.72E+01	18.43357	CV	0.68%	1109.428	Max
12:22:08	User	9'	•				
70	12:22:08 .	1.71E+01	18.32386	Rt side on	ly SF6 100°	% capture	
71	12.22:44 .	1.69E+01	18.10455	engine idle	@ 800 rpm)	
72	12.23.20 .	1.70E+01	18.21419				
	12:23:55 .	1.70E+01					
	12:24:30	1.69E+01	•			 	
	12:25:06 .	1.70E+01			18.2142	1102.75	Mean flow
	12:25:41 .						
77	12:26:17 .	1.70E+01			0.46%		
12:26:52 (10	10.2.14.10		0.4070	1100.120	1
78	12:26:52		34 80003	Roth side	SF6 100%	capture	<u>:</u>
79	12:27:28 .						!
80	12:28:03 .	3.20E+01			@ 800 ipii	1	
81	12:28:38	3.17E+01			34.83914	4446 972	Moon flour
82	12:29:14 .	. 3.17E+01					
	12:29:49	3.19E+01				1151.925	
83			34.91554	CV	0.40%	1151.925	IVIAX
12:30:25 (11 475 - 54	04.60004	Dississ 61	! !		<u>!</u>
84	12:30:25 .				6 into dist	nontion te	es
85	12:31:00 .	1.73E-01			•	•	
86	12:32:12 .	5.13E-02			<u> </u>	· ·	<u> </u>
87	12:32:47 .	4.85E-02					·
8 8	12:33:23 .	3.17E-02			·		•
89	12:33:58 .		0.036112				<u>.</u>
90.		2.83E-02					
	12:35:09 .	3.28E-02		<u>. </u>		·	
92		3.04E-02		 			İ
93		: 2.16E-02		•			<u> </u>
12:36:55		12 :		<u> </u>			
94	12:36:55				ly, distribu	tion	
95	12:37:31:.	1.38E+01					İ
9 6	12:38:09].	1.13E+01					!
97	12:38:44	1.11E+01					
98	12:39:19	1.42E+01	15.15595	,			<u> </u>
99	12:39:55 .	7.43E+00	7.859351				i
100	12:40:30	9.51E+00	10.08672				
	12:41:25 .	8.43E+00					! .
102	12:42:01 .	1.36E+01					
103	12:42:36	1.26E+01					
	12.72.00:	7.202.01			<u>' </u>		·

104	12:43:11 .	1.11E+01	44 70702	!			
	12:43:47	6.16E+00		Ava	11.67356	64.19%	AVe Eff
	12:44:22						
	12:44:57 .	8.44E+00			25.98%		Max Eff
12:45:33 (13	.0.535330	CV	25.55761	00.1070	MIGA EII
	12:45:33 .	. 2.05E+01	22 07152	Poth sides	distributi	00	
	12:46:11 .	2.88E+01		Both Sides	, distributi	OII	
	12:46:46 .	1.93E+01					
I	12:47:22.	2.65E+01					
<u> </u>	12:47:57,.	2.04E+01					
		1.88E+01					
113	12:48:32 ¹ . 12:49:08 ¹ .	 ·					
		1.93E+01					
115	12:49:43 .	2.43E+01			<u> </u>		
116	12:50:19	1.79E+D1					
117	12:50:54	2.64E+01		•	05 46677	70.000/	A 56
118	12:51:41 .	3.35E+01	36.75425		25.16977		
119	12:52:16 .	1.75E+01					
	12:52:52 .	2.63E+01			22.78%	105.13%	Max Eff
	12:53:27	2.53E+00		•			i
122	12:54:05 .	2.39E+00	2.513632	<u>.</u>	: 		
12 [.] 54:41 L		14		۱ و	:		<u> </u>
123	12:54:41 .	6.78E-01	0.713948	SF6 off, ren	move tubing	3 & distribu	tion tees
124	12:55:19 .	7.64E-01	0.804161				
125	12:55:54 .	2.81E-01	0.297763		i		
126	12:56:29	2.87E-01	0.30405		,		•
127	12:57:05 .	4.01E-01	0.423517	:	:	··········	1
128	12:57:40 .	3.35E-01	0.354348		•		· · · · · · · · · · · · · · · · · · ·
129	12:58:16 .	4.29E-01		!	•		:
130	12:58:51 .		0.396267		•		
131	12:59:26 .	4.17E-01					•
132	13:00:02 .		0.180429				!
133	13:00:37 .	2.73E-01					i
134	13:01:44 .		0.197189				1
135	13:02:19 .	2.56E-01				······································	Ī
136	13:02:55 .		0.177287				<u>. </u>
137			0.219187	······································			:
138	13:04:05		0.094545				
139	13:04:41 .	1.10E-01					<u> </u>
13:05:16		15,					
140	13:05:16		0.277856	Backgrour	nd, inside d	garage	;
141				Some Rose			
142	13:06:27	1.09E-01					
143	13:07:02	9.36E-02					
144	13:07:38	7.79E-02					
145			0.072867		*****		1
146	13:08:48		0.095488				
147			0.099153				
147:	13:09:59 .	9.88E-02					1
148	13:10:34,.		0.075904			•	i
			0.073904				<u>. </u>
150	13:11:29'.		0.093707				4
151	13:12:05 .	0.026-02	0.083707				

Large Fan	3/12-15/ Screed		engine	outside	:	
.!:			,	i	i	.
- 1302 Measurement Data	1804892	/2803 - 199	6-03-14 16:	26 - Page	1 -	•
1302 Settings:		:	;	i		ı
***************************************		************		i	1	1
:					i	
Compensate for Water Vap. Ir	nterference	:	NO	1		
Compensate for Cross Interfer	ence :	N()			!
Sample Continuously	<u>:</u>	YES	•	1	!	:
Pre-set Monitoring Period	<u>:</u>	NO			1	
	:		•		!	i
Measure	-	<u> </u>	:		1	1
Gas A: Formaldehyde	<u>:</u>	NO	:	!	1	
Gas B: Carbon dioxide	<u>:</u>	NO		!	1	
Gas C: Carbon monoxide	:	NO		•		1
Gas D: TOC as Propane	<u>:</u>	NO		į		i
Gas E: Sulfur hexafluoride	:	YES	:			
Water Vapour	:	NO		:	1	i
	·		د ۔	!	:	
Sampling Tube Length	<u>:</u>	15.0 ft				
Air Pressure	_:75	9.0 mmHg			<u>:</u>	
Normalization Temperature		5,0.0	: ,	:	·	
				·	<u> </u>	
General Information:				!	:	!
CAn at Time a				<u>:</u>		
	: 1996-03-1		·			:
Stop Time	: 1996-03-1	4 10:22		: 	•	i
Results Not Averaged Number of Event Marks				<u> </u>	<u>:</u>	!
Number of Recorded Samples	<u>-</u>	5		<u>:</u>	:	
Number of Recorded Samples		56		<u>i</u>		,
Samples Measured From 1996	02 14 00:4		· · · · · · · · · · · · · · · · · · ·	:	!	}
Samples Measured From 1990	-03-14 09.4			:	<u>i</u>	
Samp. Time	Response	Calibration		<u>• </u>	:	
		Correction				
	FFIVI	Correction	·	t	<u> </u>	<u> </u>
1 9:47:48 .	3 40F-02	0.039044	Backgrou	! nd, in exha	i vist stack	
2 9:48:31		0.03517		ilu, ili exila	Stack	
		0.032866		<u> </u>	SF6 flow r	-1
				I	Rt side	ates
3 9:49:07					Kt Side	
3: 9:49:07 . 4: 9:50:01 .	3.24E-02			:	O EEEO	
3: 9:49:07. 4: 9:50:01. 5 9:50:37.	3.24E-02 3.29E-02	D.037893		i	0.5662	
3: 9:49:07 . 4: 9:50:01 . 5 9:50:37 . 6 9:51:12 .	3.24E-02 3.29E-02 2.93E-02	0.037893 0.034123			Both sides	
3: 9:49:07 . 4: 9:50:01;. 5 9:50:37:. 6 9:51:12 . 7: 9:51:48 .	3.24E-02 3.29E-02 2.93E-02 4.41E-02	0.037893 0.034123 0.04962				
3 9:49:07 . 4 9:50:01 . 5 9:50:37 . 6 9:51:12 . 7 9:51:48 . 8 9:52:23 .	3.24E-02 3.29E-02 2.93E-02 4.41E-02 6.50E-02	0.037893 0.034123 0.04962 0.071506		0.062425	Both sides 1.1235	
3 9:49:07 . 4 9:50:01 . 5 9:50:37 . 6 9:51:12 . 7 9:51:48 . 8 9:52:23 . 9 9:52:58 .	3.24E-02 3.29E-02 2.93E-02 4.41E-02 6.50E-02 1.89E-01	0.037893 0.034123 0.04962 0.071506 0.201379	Avg.	0.063435	Both sides 1.1235	
3 9:49:07 . 4 9:50:01 . 5 9:50:37 . 6 9:51:12 . 7 9:51:48 . 8 9:52:23 . 9 9:52:58 . 10 9:53:34 .	3.24E-02 3.29E-02 2.93E-02 4.41E-02 6.50E-02 1.89E-01 7.47E-02	0.037893 0.034123 0.04962 0.071506 0.201379 0.081664	Avg. Std. Dev.	0.051267	Both sides 1.1235	
3 9:49:07 . 4 9:50:01 . 5 9:50:37 . 6 9:51:12 . 7 9:51:48 . 8 9:52:23 . 9 9:52:58 .	3.24E-02 3.29E-02 2.93E-02 4.41E-02 6.50E-02 1.89E-01 7.47E-02	0.037893 0.034123 0.04962 0.071506 0.201379	Avg. Std. Dev.		Both sides 1.1235	

CAT_Inside_Lg

13	9:55:23 .	1.40E+01	14.93843	,			!
14	9:55:58 .	1.39E+01			1		!
15	9:56:331.	1.38E+01			i		
16	9.57:09		14.93843				<u> </u>
17	9:57:44 .	1.40E+01			!		!
18	9:58:20	1.40E+01			14.89767	1341 61	Mean flov
19.					0.099596		
20	9:59:30 .	1.39F+01	14.82971	CV.	0.67%		
10:00:17:		2	14.02011		1 0.0770	1007.700	10.00
21			20 34076	Roth side	s SF6 100%	canture	
	10:00:55	2.67E+01	29 00214	Dotti Side	3 01 0 100 %	capture	
	10:01:30	2.69E+01	20 22785				
24		2.69E+01	20 22785				
	10:02:41	. 2.69E+01			1	•	
	10:03:16		29.11498		29.16336	1350 04	Mean fin
	10:03:52	2.002-01	20.11430	Sid Day			
28	10:04:27	2.68E+01	29.11496 29.22785	CV	0.000/80	1330.909	MACK
10:05:03	leer	3	29.22160	, UV	0.30%	1367.47	· XBIVI
	10:05:03	4 005 04	D 445004	Dia -2	Fo the second	-11 41 -	<u> </u>
		1.36E-01	0.145864	Placing S	F6 Into dist	ribution te	es
	10:05:43 .		0.056322		·		<u>i</u>
31	10:06:18 .		0.048259				:
10:06:54				-	<u> </u>		!
	10:06:54 .	1.53E-01	0.16367	Rt side on	ly, distribu	tion	1
	10:07:29 .	1.24E+01			!		<u>:</u>
	10:08:07 .	1.37E+01					
35	10:08:43 .	1.05E+01			<u> </u>		!
	10:09:18 .	7.60E+00			;		
37	10:10:24		14.28659		:		1
38	10:11:00 .	1.37E+01					
39	10:11:35 .	9.07E+00	9.614495	Avg.	12.19602	81.87%	Ave Eff
40	10:12:11	1.11E+01	11.79793	Std. Dev.	2.299524		
41.	10:12:46 .	1.17E+01	12.44561	CV	18.85%		Max Eff
42	10:13:22 .	1.48E+01	15.80925				
43	10:13:57 .	1.61E+01			:		
10:14:33 L		5 .					
	10:14:33 .	1.71E+01	18,32386	Both sides	s. distributi	on	<u> </u>
45	10:15:10	2.83E+01			-, =		
46	10:15:46	2.87E+01					
47	10:16:21 .	2.70E+01					
48	10:16:57;.	2.59E+01	28.10067				
49	10:17:32 .	2.39E+01					
50.	10:17:32 .	2.01E+01					· · · · · · · · · · · · · · · · · · ·
50. 51:	10:18:43				·		
		2.44E+01		A	77 7600		
52	10:19:18:.	2.57E+01			27.7628		
53	10:20:13,.				3.010658		
54	10:20:49	2.83E+01			10.84%	107.21%	Max Eff
55	10:21:24:.	5.48E-01	0.577619		i		
5 6	10:22:05 .	6.05E-01	0.637388		1		

CAT 3 Kalb, Illinois 3/12-15/1996	
Large ian Outside testing	
1 4	
- 1302 Measurement Data 1804892/2803 - 1996-03-14	4 16:24 - Page 1 -
1302 Settings:	
1.6	
Compensate for Water Vap. Interference : NO	
Compensate for Cross Interference : NO	
Sample Continuously : YES	
Pre-set:Monitoring Period : NO	
4	
Measure	
Gas A: Formaldehyde : NO	
Gas B: Carbon dioxide : NO	
Gas C: Carbon monoxide : NO	
Gas D: TOC as Propane : NO	
Gas E: Sulfur hexafluoride : YES	
Water Vapour : NO	
Sampling Tube Length : 15.0 ft	
Air Pressure : 759.0 mmHg	
Normalization Temperature : 50.0 F	<u> </u>
General Information:	:
Start Time : 1996-03-14 10:58	1 1
Stop Time : 1996-03-14 12:06 :	
Results Not Averaged	
Number of Event Marks : 7	
Number of Recorded Samples : 106	
Transport of Necotaed Gampies . 100	i
Transport of recorded damples 106	
Samples Measured From 1996-03-14 10:58	
Samples Measured From 1996-03-14 10:58	
Samples Measured From 1996-03-14 10:58	
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration	
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration	
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction	ont to back, 0 degrees
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from	ont to back, 0 degrees
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all	bout 6 mph
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all	bout 6 mph
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in expense of the control of the c	bout 6 mph exhaust stack
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in equal 4 11:00:36 2.76E-02 0.032343	bout 6 mph exhaust stack ! SF6 flow rates
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in each 11:00:36 2.76E-02 0.032343 5 11:01:12 2.69E-02 0.03161	bout 6 mph exhaust stack SF6 flow rates Both sides
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in a second of the second	bout 6 mph exhaust stack ! SF6 flow rates
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in each 11:01:12 2.69E-02 0.03161 5 11:01:12 2.69E-02 0.036112 7 11:02:23 3.03E-02 0.03517	bout 6 mph exhaust stack SF6 flow rates Both sides 1.1235 lpm
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in equal 4 11:00:36 2.76E-02 0.032343 5 11:01:12 2.69E-02 0.03161 6 11:01:47 3.12E-02 0.036112 7 11:02:23 3.03E-02 0.03538	bout 6 mph exhaust stack SF6 flow rates Both sides 1.1235 lpm
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in a second of the second	bout 6 mph exhaust stack SF6 flow rates Both sides 1.1235 lpm
Samples Measured From 1996-03-14 10:58 Samp. Time Response Calibration No. hh:mm:ss Event PPM Correction 1 10:58:43 3.67E-02 0.041872 Wind blowing from 2 10:59:25 3.96E-02 0.044908 Wind speed at all 3 11:00:01 3.03E-02 0.03517 Background, in a second of the second	SF6 flow rates Both sides 1.1235 lpm 1846 1004

Outside1_Lg_Fan

	44.60	•	44					
14			11.15131				1	1
15	11:07:		12.66175				!	
16	11:07:-	1E+01					;	•
17.			13.20261					
18	11:09:0		12.98617					•
	11:09:4		15.59136					1
	11:10:16		10,52726	Avg.	12.41263		Ave Eff	
21	11:10:52		15.48246	Std. Dev.	1.930439	70.65%	Min Eff	•
22	11:11:27	:9E+01	15.91825	CV	15.55%	106.83%	Max Eff	
11:12:02		1		•				
23	11:12:02	12E+01	11.9058	Both side:	s, distributi	on		
24	11:12:35		20.85502					1
25		7.11E+01					i	
26		2.65E+01						
27		2.27E+01					1	
		2.23E+01			:		•	
		2.56E+01						
		2.40E+01						:
31	11:16:48	1.53E+01	16.35452	Avg.	23.82946		Ave Eff	1
32		2.28E+01			3.544242,	56.70%	Min Eff	
33		2.10E+01			14.87%		Max Eff	!
34		5.96E+D0	6.292742		i			<u> </u>
11:19:48.1		2					i	<u> </u>
35	11:19:48	4.43E-01	0.46754	Wind blow	ing right to	left, 90 d	egrees	İ
36	11:20:26	4.55E-02	0.051086	Wind spee	d at about	6 to 7 mp	h	:
37	11:21:02	3.50E-02	0.040091				!	;
38		6.09E-02					 	
39		5.16E-02					•	
40		3.14E-02			- 			
41		4.16E-02	0.047002			·		:
42	11:23:59	4.09E-02	0.04627					· · · · · · · · · · · · · · · · · · ·
11:24:34 L		3						
43	11:24:34	2.78E-02	0.032552	Rt side on	ly, distribut	tion		:
44	11:25:10	2.60E+00	2.734945		!	····		i
45	11:25:48	3.93E+00	4.139445		·	····	_	1
46	11:26:23	7.37E+00	7.795286	:	:			1
47		1.29E+01					·	
48		6.68E+00				······································		i
49		7.62E+00			8.13828	54.62%	Ave Eff	:
				Std. Dev.	2.851964	27.78%		
51		7.84E+00	8.297405	CV .	35.04%		Max Eff	
11:30:15 L		4	. <u></u>				· · · · · · · · · · · · · · · · · · ·	
52	11:30:15	8.10E+00	8.575448	Both sides	, distribution	on		
53		4.92E+00			1			
54	11:31:26	9.36E+00	9.925671		1			
55	11:32:01	8.07E+00	8.543356	1				
56		9.45E+00					···········	1
		1.30E+01					, .	:
58		1.44E+01				' :		•
59		1.14E+01					· ·	<u> </u>
60		1.05E+01			14.72143	51.04%	Ave Eff	· · · · ·
							· · · ·	

Control Outside1_Lg_Fan

61					6.682565			
62		2.18E+01		CV	45.39%	97.03%	Max Eff	
63		3.23E-01				!	:	
		1.02E-01				i	!	
		4.08E-02				. i		
6 6;		3.47E-02						
67	11:39:24	3.00E-02	0.034856	Wind blow	ving back to	front, 180	degrees	
68	11:40:00	2.05E-02	0.024909	Wind spee	d at about	6 to 7 mpt	1	
69	11:40:35	3.62E-02	0.041348					
70	11:41:11	2.81E-02	0.032866			,		
11:41:46	Jser :							
71.	11:41:46	2.45E-01	0.260045	Rt side on	ly, distribut	ion		
		8.11E+00		*				
73	11:42:59	5.59E+00	5.899399					
74	11:43:35	1.64E+01	17.55681					
		8.29E+00			: ;			
		6.22E+00			:			
		7.34E+00						
					9.360972	62 83%	Ave Eff	
79	11:46:32	1 11F+01	11 70703	Std Dev	3,779396	39 59%	Min Eff	
		8.69E+00			40.37%	117.83%	Max Eff	.,
11:47:45·l		6.092.00	5.207118		. 40.0770	117.0070		
		1 31E±01	13 06108	Both side	s, distributi	on		
		6.67E+00			3, 0131115011			
		8.53E+00			<u>`</u>		·	
84		8.73E+00			·		•	<u> </u>
		7.90E+00			i		•	
		1.96E+01			 			
87				Avo	16.15689	56.01%	Ave Eff	
					9.322035		Min Eff	
89					57.70%			
11:53:45		7.002.701	31.1319		37.7070	100.0070	TOTAL ETT	
		3 23E±01	35 37435	Roth side	s SF6 100%	canture	<u> </u>	
		2.19E+01			3 37 0 100 70	capitale	1	r
91.		2.19E+01			:			· · · · · · · · · · · · · · · · · · ·
		2.78E+01					·	7
		1.51E+01					i	
94		2.67E+01					: .	<u> </u>
95					!!		!	
96		2.67E+01			28.84425	1274 DEE	Mean flow	
97:		2.65E+01			: 0.151303			1
98.						1383.609		
99		2.65E+01						<u> </u>
100		2.07E-01			<u>· </u>		·	<u>'</u>
101		6.09E-02			: :		1	
102		4.11E-02			<u>· </u>		 	<u> </u>
103		3.40E-02			<u> </u>			<u> </u>
104		3.49E-02					-	; !
105	12:03:06		0.045013				<u> </u>	<u>i </u>
12:05:58	1302		0.050445	·			.	
106		4.68E-02	0.052448				-i	1
1.	12:07:44	. •	3.23E-02	0.037264	Wind blow	ing left to	right, 270	aegrees

2				Wind spec	d at about	6 mph	i
3		3.42E-02	0.03	Backgrou	nd, in exha	ust stack	
12:09:37	User	1		1			
4	12:09:37	2.55E-02	0.030	Rt side on	ly, distribu	tion	:
5	12:10:12 .	4.05E+00	4.26€		!		<u>:</u>
6	12:10:50	. 1.42E+01	15.155				i
7	12:11:26 .	1.08E+01	11.474				
8	12:12:01:.	1.04E+01	11.0430				
9	12:12:36 .	8.48E+00					
101	12:13:12	1 5.60E+00	5.9100	Avg.	9.678156	64.95%	Ave Eff
11:	12:13:47			Std. Dev.	3.380239	28.63%	Min Eff
12	12:14:22 .		10.0222:		34.93%	101.72%	Max Eff
12:14:58	User	2	4	:			
13	12:14:58	1.03E+01	10.93601	Both sides	s, distributi	on	<u> </u>
14	12:15:33 .	3.30E+01	36.17866				i
15	12:16:22 .	1.37E+01	14.61237		· · · · · · · · · · · · · · · · · · ·	- 	:
16	12:17:00 .	2.13E+01	22.95869	t		·	
17	12:17:37 .	2.14E+01	23.06973	·			
18	12:18:13	1.59E+01					<u>: </u>
19	12:18:50 .	2.47E+01	26.75251				<u> </u>
20	12:19:28 .	1.91E+01		Avg.	21.03742	72.95%	Ave Eff
21	12:20:04	1.90E+01		Std. Dev.			
22	12:20:39 .	: 2.13E+01	22.95869		18.17%		Max Eff

CAT, DeKalb, Illin	ois 3/12-15/1996	5 :		
Large fan	'Outside tes	sting		
400014		• •		
- 1302 Measurement Dat	ia 1804892/2803 ·	- 1996-03-14 ··	2 - Page 1 -	
1302 Settings:		L		

Componento for Motor M	: : : : : : : : : : : : : : : : : : :			
Compensate for Water V Compensate for Cross In		NO NO		
Sample Continuously		NO		
Pre-set Monitoring Perior	: YE			
1 10-30t Workloning F enot	<u> </u>	<u> </u>	- 	
Measure		 :		
Gas A: Formaldehyde		10		
Gas B: Carbon dioxide	: N			:
Gas C: Carbon monoxide		NO :		-
Gas D: TOC as Propane	- ·	NO .	·	
Gas E: Sulfur hexafluorid		ES	<u> </u>	
Water Vapour	: NO	. ;	· · · · · · · · · · · · · · · · · · ·	<u> </u>
vaice vapour		.)		
Sampling Tube Length	. 15	.O ft		<u> </u>
Air Pressure	: 759.0 mi		· · · · · · · · · · · · · · · · · · ·	
Normalization Temperatu		0.0 F		
Trombile Lander Temperate	<u> </u>	U.U F		<u>!</u>
General Information:				
			<u> </u>	- !
Start Time	: 1996-03-14 14:0	19		1
Stop Time	: 1996-03-14 15:1			
Results Not Averaged				<u> </u>
Number of Event Marks	: 1	0		:
Number of Recorded San		98		· · · · · · · · · · · · · · · · · · ·
•	· 		· · · · · · · · · · · · · · · · · · ·	
Samples Measured From	1996-03-14 14:10		· · · · · · · · · · · · · · · · · · ·	

Samp. Time .	Response Calibr	ration	:	
lo. hh:mm:ss Even	t PPM Corre	ction		
				
12:21:14 User	3:	i		
23 12:21:14	8.53E-01; 0.89°	7541 Wind blo	wing back to fron	t, 180 dearees
24 12:21:55			ed at about 9 mp	
25 12:22:30	: 3.16E-02 D.03			
25 12:22:30 . 26 12:23:06 .		6531		ļ
		6531		
26 12:23:06	3.16E-02 0.03	6531 9516		
26 12:23:06 . 27 12:23:41 .	3.16E-02 0.03 4.40E-02 0.04 4.68E-02 0.05	6531 9516		
26 12:23:06 . 27 12:23:41 . 28 12:24:16 .	3.16E-02 0.03 4.40E-02 0.04 4.68E-02 0.05	6531 9516 2448		
26 12:23:06 . 27 12:23:41 . 28 12:24:16 . 29 12:24:52 .	3.16E-02 0.030 4.40E-02 0.040 4.68E-02 0.050 1.16E+00 1.20	6531 9516 2448 1982	nly, distribution	
26 12:23:06 . 27 12:23:41 . 28 12:24:16 . 29 12:24:52 . 12:25:27 User	3.16E-02 0.030 4.40E-02 0.040 4.68E-02 0.050 1.16E+00 1.20	6531 9516 2448 1982 7473 Rt side o	nly, distribution	
26 12:23:06 . 27 12:23:41 . 28 12:24:16 . 29 12:24:52 . 12:25:27 User 30 12:25:27 .	3.16E-02 0.03 4.40E-02 0.04 4.68E-02 0.05 1.16E+00 1.2 4 2.33E-01 0.24	6531 9516 2448 1982 7473 Rt side o	nly, distribution	

34	12:28:221.	: 0.055+00	0.567044		 .	-	
		9.05E+00			<u> </u>		<u> </u>
	12:28:58	8.98E+00			12 2222		ļ
	12:29:33 ₁ . 12:30:08 ₁ .	4.20E+00			10.28636		Ave Eff
38	12:30:44 .	1.13E+01					Min Eff
12:31:19 U		5.89E+00	6.218295	CV	43.60%	108.30%	Max Eff
	12:31:19 .		0.500044	: '**			:
		8.12E+00	8.596844	Both side	s, distributi	on	ļ
	12:31:55 .	8.50E+00					
	12:32:30 .	1.78E+01					!
	12:33:06 .	8.75E+00					<u> </u>
	12:33:41 . 12:34:19 .	1.93E+01					1
	12:34:54,.	1.91E+01			45 40 54 4	20 522	
		1.23E+01				60.56%	
	12:35:32 .	1.75E+01					Min Eff
47	12:36:08	2.69E+01	29.22785	CV	38.75%	101.34%	Max Eff
	44.40.04				:		·
<u> </u>	14:10:04	3.91E-02	0.044385	Wind blow	ing left to	right, 270	degrees
	14:10:47 .				d at 3 to 4		<u> </u>
	14:11:23 .			Backgroui	nd, in exha	ust stack	·
	14:11:58 .	2.86E-02	0.03339	<u> </u>	:		l
14:12:33 U		1			:	····	:
	14:12:33 .				ly, distribu	tion	
	14:13:11:.	8.50E+00		<u>-</u>			
	14:13:47	1.36E+01			ı		!
	14:14:22 .	: 5.67E+00					i
	14:14:57 .	5.69E+00					:
	14:15:33 .	7.45E+00			:		1
	14:16:08 .	7.03E+00			10.0279		Ave Eff
	14:16:43 .	1.98E+01					
	14:17:21 .	7.67E+00	8.115714	CV	52.71%	142.93%	Max Eff
14:17:59 U		2,			:		
	14:17:59 .	: 4.37E+00		Both sides	s, <mark>d</mark> istributi	on	l
15	14:18:34	1.32E+01					
	14:19:10:.	2.48E+01	26.86467		:		
17	14:19:48	1.31E+01	13.96108		į		
18	14:20:37 .	9.91E+00	10.51651		•		
19	14:21:12 .	1.34E+01	14.28659	1	1		i
20	14:21:47 .	1.30E+01			18.52231	63.56%	Ave Eff
21	14:22:22 .	2.54E+01	27.53835	Std. Dev.	7.257959	36.09%	Min Eff
	14:23:00	2.50E+01	27.0891	CV	39.18%	94.50%	Max Eff
14:23:36 U	ser !	3			· .		
23	14:23:36 .				ing front to		egrees
	14:24:14	1.35E+00	1.419405	Wind spee	d at 5 to 6	mph	
	14:24:52 .	3.66E-02	0.041767		1		
26:	14:25:27 ₁ .	4.65E-02	0.052133	i			
27	14:26:03 .	9.45E-02	0.102399				
28	14:26:38	4.49E-02	0.050458				
29 '	14:27:13	5.13E-02	0.05716				-
30	14:27:49 .	3.70E-02	0.042186			······································	
31	14:28:24 .	1.27E-01			:		
	14:29:00 .	2.54E-02			:		
				——— —			

	· · · · · · · · · · · · · · · · · · ·							
33	14:29:35	;	2.29E-02	0.027422	i			
34	14:30:10 .		8.48E-02	0.092241	•			
35	14:31:17 .	:	1.81E-01	0.192999	t			
14:31:52	Jser :	4	· !		i		• .	
36	14:31:52		6.27E+00	6.6226	Rt side on	ly, distribu	tion	
37:	14:32:30	!	1.29E+01	13.74422				
38	14:33:06	·	8.60E+00	9.110697				
39	14:33:41		1.12E+01	11.9058				
40	14:34:16		1.16E+01	12.33759	1			
41	14:34:52	:	8.49E+00	8.99288				
42	14:35:27	1	1.13E+01	12.0137	Avg.	11.23911	75.43%	Ave Eff
43	14:36:02					1.636863	60.35%	Min Eff
44	14:36:38		1.07E+01	11.36673	CV	14.56%	92.24%	Max Eff
14:37:13:1	Jser :	5:		٠,				
45	14:37:13 .			5.570141	Both sides	s, distributi	on .	
	14:37:49		2.66E+01			·		
47	14:38:27	:	2.42E+01	26.1922	· · · · · · · · · · · · · · · · · · ·			
	14:39:02		2.72E+01					
	14:39:38		2.45E+01	!".			·	
50	14:40:13 .		1.85E+01					
51	14:41:08 .		2.41E+01	26 08024	Avn	25.6859	88 15%	Ave Eff
	14:41:43 .					3.113776		
53	14:42:19		2.35E+01			12.12%		
14:42:54 L		6		20.40010				
	14:42:54 .		2.36F+01	25 52093	Both side	s SF6 100%	capture	<u> </u>
	14:43:30 .		2.60E+00					<u>.</u>
	14:44:07		1.38E+01			•		<u> </u>
57	14:44:43		1.41E+01			•	SF6 flow	ates
58	14:45:18 .		1.41E+01				Both sides	
	14:45:54 .		2.68E+01				1.1235	·
60	14:46:31	***********************************	2.68E+01					
61	14:47:07		2.69E+01					<u>:</u>
62	14:47:42		2.69E+01			•		i I
63	14:48:18		2.68E+01					<u>:</u> i
64	14:48:53		2.67E+01				! <u> </u>	· ·
65	14:49:28		2.68E+01			29 13756	1361.114	Mean flow
66					Std. Dev.		1356.909	
67			2.69E+01			0.094423		
14:51:26		7:	<u> </u>	يجوبيد ال	:	0.52 /6	1007.77	
68	14:51:26		1 78F-01	0 180856	Wind blov	ving right t	n left an d	POTPPE
			4.77E-02			ed at about		
69	14:52:06		3.31E-02			a al anoul	o to r mpi	
70	14:52:41		2.88E-02					
71			3.01E-02			:		
. 72	14:53:52		3.01E-02; 2.94E-02			•		
73	14:54:27					<u>i</u>		<u> </u>
	14:55:03:		3.42E-02			!	<u> </u>	
75.			2.60E-02	0.03008	<u>: </u>	<u> </u>		1
14:56:14 (8	0.405.00	0.005000	Di nida s	: al:=4=!}-		
76;	14:56:14:.					ily, distribu	ILION	
77:			3.23E-01			 	<u> </u>	!
78	14:57:25	<u> </u>	7.86E+00	8.318/86		1		<u> </u>

Outside2_Lg_Fan

14:58:03:.		9.84E+00	10.44126		:		1
14:58:38 .		1.22E+01	12.98617			*******	:
		1.36E+01	14.50375				:
14:59:49 .		1.24E+01	13.20261				i .
		1.06E+01	11,25901	Avg.	11.37516	76.34%	Ave Eff
15:01:31:.							
15:02:06 .							Max Eff
lser i	9		H. A		1		
15:02:42 .		1.25E+01	13.31087	Both side	s. distributi	on	<u> </u>
15:03:17					1		
15:03:52;.							
15:04:28 .					1		
15:05:03					: :		;
15:05:39						·	}
					16.57277	56.87%	Ave Eff
15:07:27 .							
ser	10				;		
		1.39E+01	14.82971	end	!		!
					i :		
					 		
15:09:54		2.67E-02	0.031401				
	14:58:38 . 14:59:13 . 14:59:49 . 15:00:55 . 15:01:31 . 15:02:06 . lser . 15:03:17 . 15:03:52 . 15:04:28 . 15:05:03 . 15:06:14 . 15:06:52 . 15:07:27 . ser . 15:08:03 . 15:08:41 . 15:09:18 .	14:59:13 . 14:59:49 . 15:00:55 . 15:01:31 . 15:02:06 . ser	14:58:38 1.22E+01 14:59:13 1.36E+01 14:59:49 1.24E+01 15:00:55 1.06E+01 15:01:31 7.82E+00 15:02:06 1.13E+01 Ser 9 15:02:42 1.25E+01 15:03:52 1.16E+01 15:04:28 1.61E+01 15:05:03 7.94E+00 15:05:39 1.44E+01 15:06:52 1.86E+01 15:07:27 1.78E+01 ser 10 15:08:03 1.39E+01 15:08:41 1.85E-01 15:09:18 4.60E-02	14:58:38 1.22E+01 12:98617 14:59:13 1.36E+01 14:50375 14:59:49 1.24E+01 13:20261 15:00:55 1.06E+01 11,25901 15:01:31 7.82E+00 8:276025 15:02:06 1.13E+01 12:0137 ser 9 15:02:42 1.25E+01 13:31087 15:03:17 1.72E+01 18:43357 15:03:52 1.16E+01 12:33759 15:04:28 1.61E+01 17:22854 15:05:03 7.94E+00 8:404321 15:05:39 1.44E+01 15:3736 15:06:52 1.86E+01 19:97272 15:07:27 1.78E+01 19:09245 ser 10 15:08:03 1.39E+01 14:82971 15:08:41 1.85E-01 0.197189 15:09:18 4:60E-02 0.05161	14:58:38 1.22E+01 12.98617 14:59:13 1.36E+01 14.50375 14:59:49 1.24E+01 13.20261 15:00:55 1.06E+01 11,25901 Avg. 15:01:31 7.82E+00 8.276025 Std. Dev. 15:02:06 1.13E+01 12.0137 CV ser 9 15:02:42 1.25E+01 13.31087 Both side 15:03:17 1.72E+01 18.43357 15:03:52 1.16E+01 12.33759 15:04:28 1.61E+01 17.22854 17.22854 15:05:03 7.94E+00 8.404321 15:05:39 1.44E+01 15.3736 15:3736 15:06:52 1.86E+01 19.97272 Std. Dev. 15:06:52 1.86E+01 19.97272 Std. Dev. 15:07:27 1.78E+01 19.09245 CV ser 10 15:08:03 1.39E+01 14.82971 end 15:08:41 1.85E-01 0.197189 15:09:18 4.60E-02 0.05161	14:58:38 1.22E+01 12:98617 14:59:13 1.36E+01 14:50375 14:59:49 1.24E+01 13:20261 15:00:55 1.06E+01 11,25901 Avg. 11:37516 15:01:31 7.82E+00 8:276025 Std. Dev. 2:266603 15:02:06 1.13E+01 12:0137 CV 19:93% ser 9 15:02:42 1.25E+01 13:31087 Both sides, distributing the sides, distributing the sides and stributing the s	14:58:38 1,22E+01 12.98617 14:59:13 1,36E+01 14.50375 14:59:49 1,24E+01 13.20261 15:00:55 1,06E+01 11,25901 Avg. 11.37516 76.34% 15:01:31 7,82E+00 8,276025 Std. Dev. 2,266603 55.54% 15:02:06 1,13E+01 12.0137 CV 19.93% 97.34% Ser 9 9 97.34% Ser 9 9 97.34% Ser 1.16E+01 13.31087 Both sides, distribution Ser 1.16E+01 12.33759 15.04.28 15.04.28 15.04.28 15.05.29 15.3736 15.05.39 14.44E+01 15.3736 15.06.14 20.02E+01 21.73936 Avg. 16.57277 56.87% Ser 10 15.06.29

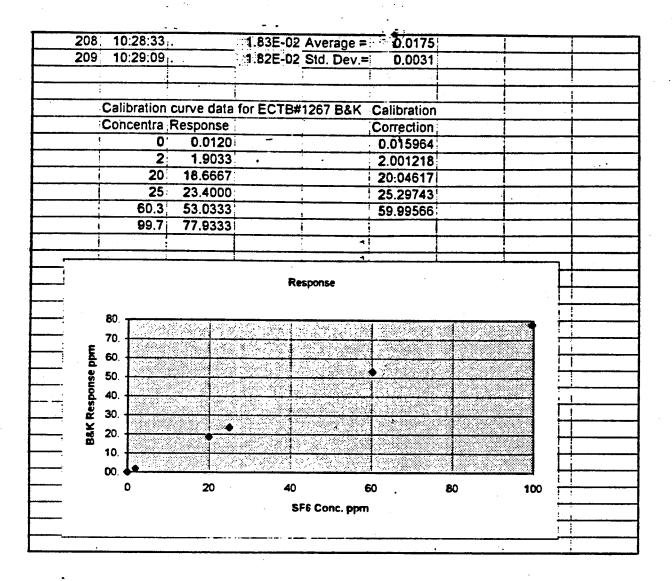
CALL DELIGID, HILLOIS	3/12-15/1996	
Large fan	Outside testing	
- 1302 Measurement Data	1804892/2803 - 1996-03-14 16	: :21
1302 Settings:	1604692/2603 - 1996-03-14 16	:21 - Page 1 -
1002 Cottings.		
:		
Compensate for Water Vap.	Interference : NO	<u> </u>
Compensate for Cross Interfe		
Sample Continuously	: YES	
Pre-set Monitoring Period	: NO	
Measure		
Gas A: Formaldehyde	: NO	
Gas B: Carbon dioxide	: NO	
Gas C: Carbon monoxide	: NO	
Gas D: TOC as Propane	: NO :	
Gas E: Sulfur hexafluoride	: YES	• •
Water Vapour	: NO	:
	. ;	:
Sampling Tube Length	: 15.0 ft	. !
Air Pressure	: 759.0 mmHg	
Normalization Temperature	: 50.0 F	
	;	
General Information:		
***************************************	***************************************	
Start Time	: 1996-03-14 15:14	
Stop Time	: 1996-03-14 16:17	
Results Not Averaged		:
Number of Event Marks	: 8	
Number of Recorded Sample	es : 100	!
Samples Measured From 19		
Samp. :Time		: :
	Response Calibration	
	PPM Correction	
No. hh:mm:ss Event	PPM Correction	
No. hh:mm:ss Event 1: 15:15:04 .	PPM Correction 2.55E-02 0.030144 Wind blo	wing back to front, 180 degrees
1 15:15:04 . 2 15:15:47 .	2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe	wing back to front, 180 degrees eed at about 4 to 5 mph
1 15:15:04 . 2 15:15:47 . 3 15:16:22 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494	
1 15:15:04 . 2 15:15:47 . 3 15:16:22 . 4 15:16:58 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822	
1: 15:15:04 . 2: 15:15:47 : 3: 15:16:22 . 4: 15:16:58 . 5: 15:17:33 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789	
1 15:15:04 . 2 15:15:47 . 3 15:16:22 . 4 15:16:58 . 5 15:17:33 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789 1	eed at about 4 to 5 mph
1 15:15:04 . 2 15:15:47 . 3 15:16:22 . 4 15:16:58 . 5 15:17:33 . 15:18:08 User 6 15:18:08 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789 1 7.89E+00 8.35086 Rt side o	eed at about 4 to 5 mph
1 15:15:04 . 2 15:15:47 : 3 15:16:22 . 4 15:16:58 . 5 15:17:33 . 15:18:08 User 6 15:18:08 . 7 15:18:46 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789 1 7.89E+00 8.35086 Rt side o 9.93E+00 10.53801	eed at about 4 to 5 mph
1 15:15:04 . 2 15:15:47 . 3 15:16:22 . 4 15:16:58 . 5 15:17:33 . 15:18:08 User 6 15:18:08 . 7 15:18:46 . 8 15:19:22 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789 1 7.89E+00 8.35086 Rt side o 9.93E+00 10.53801 9.04E+00 9.582318	eed at about 4 to 5 mph
1 15:15:04 . 2 15:15:47 . 3 15:16:22 . 4 15:16:58 . 5 15:17:33 . 15:18:08 User 6 15:18:08 . 7 15:18:46 . 8 15:19:22 . 9 15:19:57 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789 1 7.89E+00 8.35086 Rt side o 9.93E+00 10.53801 9.04E+00 9.582318 1.16E+01 12.33759	eed at about 4 to 5 mph
No. hh:mm:ss Event 1 15:15:04 . 2 15:15:47 . 3 15:16:22 . 4 15:16:58 . 5 15:17:33 . 15:18:08 User 6 15:18:08 . 7 15:18:46 . 8 15:19:22 .	PPM Correction 2.55E-02 0.030144 Wind blo 3.08E-02 0.035694 Wind spe 9.65E-02 0.104494 1.14E-01 0.122822 7.10E-02 0.077789 1 7.89E+00 8.35086 Rt side o 9.93E+00 10.53801 9.04E+00 9.582318	eed at about 4 to 5 mph

Outside3_Lg_Fan

13 15:22:29	: 1.57E+01	16.79128	CV	20.41%	112.69%	Max Eff
15:23:04 User	2					
14 15:23:04 .	9.97E+00	10.58102	Both sides	s, distributi	on	· · · · · · · · · · · · · · · · · · ·
15 15:23:40	8.91E+00					
16 15:24:16.	2.40E+01					
17 15:24:53	2.40E+01					
18: 15:25:29:.	2.68E+01	*,				
19 15:26:04	2.59E+01			i		
20 15:26:39	2.97E+01					
21 15:27:15 .	1.97E+01	21.18641	Ava.	25.93084	88.99%	Ave Eff
2 2 15:27:50 .			Std. Dev.			
23 15:28:25 .	1.91E+01			15.39%		Max Eff
24 15:29:01 .	1.42E+00			1		
25 15:29:41 .	6.90E-02					
26 15:30:17.	4.65E-01	0.490602				
27 15:31:23 .	6.44E-02	0.070878				i
28 15:31:58 .	4.41E-02			7		· · · · · · · · · · · · · · · · · · ·
29 15:32:34;.	6.54E-02					<u></u>
30 15:33:09	6.52E-02					
31 15:33:45 .	: 2.24E-01			-		
32 15:34:20 .	2.98E-01				•	
33 15:34:55		0.099258		:		
15:35:31 User	3			· · · · · · · · · · · · · · · · · · ·		i
34 15:35:31 .	1.41E-01	0.151101	Wind blow	ing left to	right, 270	degrees
35 15:36:07 .	7.64E+00	8.083659	Wind spee	d at 3 to 4	mph	 _
36 15:36:44 .			Rt side on			
37 15:37:20 .	8.80E+00			1	*********	
38 15:37:55	. 7.28E+00	7.699208	;	1		
39 15:38:31 .	7.65E+00	8.094344			· · · · · · · · · · · · · · · · · · ·	
40 15:39:06 .	1.13E+01	12.0137	Avg.	9.526898	63.94%	Ave Eff
41 15:39:41 .			Std. Dev. :	2.099929	48.24%	Min Eff
42 15:40:17 .	6.80E+00	7.187188	CV	22.04%	82.80%	Max Eff
15:41:11 User	4					
43 15:41:11 .	1.91E+01	20.52392	Both sides	, distributi	on	
44 15:41:49 .	1.29E+01	13.74422				
45 15:42:27;.	2.07E+01	22.29312				
46 15:43:05	2.11E+01	22.7367	:			
47 15:43:40	1.56E+01	16.68204	;			
48 15:44:18	1.69E+01					
49 15:44:54 .	3.18E+01			21.35597		
50 15:45:32	2.07E+01			6.280786		
51 15:46:07	1.88E+01			29.41%	119.43%	Max Eff
52 15:46:42	7.84E-01					
53 15:47:22.	8.09E-02		!	:		
54: 15:47:58	2.89E-02					
55, 15:48:33	3.18E-02	0.036741	i	i		
56 15:49:09	2.45E-02	0.029097	1			
57 15:49:44	2.80E-02			!		
58 15:50:31 .	3.83E-02			i		
59, 15:51:06	4.15E-01.	0.438191				
15:51:41 User	5 .					

Outside3_Lg_Fan

		·					
60	15:51:41	3.86E+00	4.065401	Wind blov	ving right t	o left, 90 d	egrees
61	15:52:19	1.08E+01	11.47449	Wind spee	ed at about	6 to 7 mp	h
	15:52:55	7.39E+00	7.81664	Rt side on	ly, distribu	rtion	!
	15:53:30	1.20E+01	12.76986		· * * * * * * * * * * * * * * * * * * *	i	
64	15:54:05 .	9.39E+00				i	i
	15:54:41	8.59E+00			9.709183		Ave Eff
	15:55:16	9.23E+00			1.980177	52.46%	Min Eff
	15:55:52	6.68E+00	7.059286	CV	20.39%	85.70%	Max Eff
15:56:27 t		6 .					
68		8.92E+00	9.453638	Both side:	s, distribut	ion	
	15:57:03:.	1.16E+01	12.33759				
70		1.12E+01					
	15:58:13	1.21E+01			·		!
72	15:58:49	7.78E+00					1
	15:59:24 .	1.43E+01					!
	15:59:59 .	: 7.57E+00			12.79517	43.91%	Ave Eff
	16:01:06 .			Std. Dev.	4.06718	27.48%	Min Eff
76	16:01:41	1.94E+01	20.85502	CV	31.79%	71.57%	Max Eff
7 7	16:02:19	1.44E+01					!
	16:02:57 .	6.02E-02					! !
	16:03:35	2.78E-02					
	16:04:10 .	2.46E-02		<u> </u>			
81	16:04:45 .	2.35E-02					
82	16:05:21 .	5.93E-02	0.065537	:			
16:05:56 L		7					i :
	16:05:56 .	2.26E-01	0.24014	Wind blow	ing front t	o back, 0 d	legrees
	16:06:32 .			Wind spee			
	16:07:09 .	1.13E+01		Rt side on	ly, distribu	tion	:
	16:07:45 .	1.14E+01	12.12164				
	16:09:49 .	1.17E+01		;			
	16:10:24 .	1.19E+01					
	16:11:00 .	1.17E+01			12.08314	81.09%	Ave Eff
	16:11:35			Std. Dev.	0.75209		
91	16:12:10:.	1.20E+01	12.76986	CV	6.22%	85.70%	Max Eff
16:12:46 U		8	· · · · · · · · · · · · · · · · · · ·				
	16:12:46 .			Both sides	, distributi	on	
	16:13:21	2.39E+01		<u> </u>			
94	16:13:59 .	2.22E+01		!			
	16:14:34	2.18E+01					
96	16:15:09	2.21E+01					
	16:15:45	2.00E+01				•	
	16:16:20 .	1.61E+01			22.19447		
	16:16:58:.	2.25E+01			3.25377	59.12%	
100	16:17:36	.: 1.62E+01	17.33793	CV !	14.66%	88.73%	Max Eff


CAT, DeKalb, Illinois	3/12-15/1996		
Calibration done in the lat	prior to survey.		
:			
- 1302 Measurement Data	<u> 1804892/2803 - 1996-0</u>	3-08 10:31 - Page 1 -	
1302 Settings:			

	i		· · · · · · · · · · · · · · · · · · ·
Compensate for Water Vap. In			.,
Compensate for Cross Interfer		This is the Ba	
Sample Continuously	: YES		reene,Caterpillar
Pre-set Monitoring Period	: NO :	March '96 se	vey.
		<u> </u>	
Measure	,		
Gas A: Formaldehyde	: NO		
Gas B: Carbon dioxide	: NO	:	
Gas C: Carbon monoxide	: NO	<u>:</u>	
Gas D: TOC as Propane	: NO		<u> </u>
Gas E: Sulfur hexafluoride	: YES		<u> </u>
Water Vapour	: NO		<u></u>
Sampling Tube Length	: 15.0 ft :		
Air Pressure	: 768.9 mmHg		
Normalization Temperature	: 74.5 F	<u> </u>	1
:			
General Information:		:	

Start Time	: 1996-03-08 08:21		
Stop Time	: 1996-03-08 10:29		
Results Not Averaged		:	
Number of Event Marks	: 10	:	
Number of Recorded Samples	: 209		
Samples Measured From 1996	-03-08 08:21		i
		: :	
Samp. Time	SF6 Gas		1
No. hh:mm:ss Event	ppm		
1 8:21:35 .	1.91E-02		
2 8:22:18;.	1.33E-02		
3 8:22:53 .	1.52E-02		
4 8:23:28 .	1.15E-02		
5: 8:24:04 .	1.58E-02		:
6 8:24:39 .	1.85E-02		
7, 8:25:14 .	1.55E-02 Room air, ve	nt lab	
8 8:25:50 .	1.37E-02 Average =	0.0154	
9 8:26:25 .	1.63E-D2 Std. Dev.=	0.0024;	i
8:27:01 User 1	!	: 1	ŀ
	· <u></u>		
8:27:01 User	1.17E-02 9.69E-03		

12 8:28:47	4.407.00.110
13 0.20.41	1.18E-02 N2 supply bag
1 14 8:29:22 .	9.41E-03 Average = 0.0116
15 8:29:58	1.51E-02 Std. Dev.= 0.0020
31:04 User 2	
16 8:31:04	1.83E-02 N2 supply bag 2
17 8:31:40	1.65E-02
32:15 User 3	
18 8:32:15	1.43E-D2
19 8:32:50	8.97E-03 N2 only in calibration bag
20 8:33:26	1.54E-02 Average = 0.0120
21 8:34:01 .	9.16E-03 Std. Dev.= 0.0034;
34:37 User 4	
22 8:34:37 .	1.00E-02
23 8:35:12 .	1.62E-02
24 8:35:48 .	1.66E-02
25 8:36:23 .	1.20E-02
26 8:36:59	1.25E-02
27: 8:37:34 .	1.44E-D2
28 8:38:10 .	1.38E-02
29 8:38:45 .	1.34E-02
30 8:39:20 .	1.50E-02
31 8:39:56 .	1.40E-02
32 8:40:51	1.24E-02
33 8:41:26 .	1.55E-02
34 8:42:01 .	1.12E-02
35 8:42:37 .	1.15E-02
36 8:43:12 .	1.34E-02
37 8:43:48 .	1.66E-02
38 8:44:23 .	1.34E-02
39 8:44:58	1.39E-02
40 8:45:34	1.30E-02
41 8:46:09 .	1.71E-02
42 8:46:45 .	1.62E-02
43 8:47:20 .	1.42E-02
44 8:47:55 .	1.61E-02
45 8:48:31 .	1.03E-02
46 8:49:06 .	1.20E-02
47 8:49:41 .	4.405.02
48 8:50:28 .	1.45E-02
49 8.51:03:.	4.475.00
50: 8:51:38:.	∴1.44E-02
51 8:52:14 .	1.83E-02
52 8:52:49 .	1.60E-02
53 8:53:25 .	1.21E-02
54 8:54:00 .	1.19E-02
55 8:54:35 · .	1.50E-02
56 8:55:11 .	1.43E-02
57 8:55:46 .	1.32E-02
58 8:56:22	8.05E-03
59 8:56:57	1.70E-02
60 8:57:32 .	1.33E-02

61	3:. :08 .	4.775.00
		1.77E-02
62	8: 3:43 .	1.45E-02
63	8.59:19	1.35E-02
64	8:59:54 .	1.45E-02
65	9:01:01 .	1.53E-02
66	9:01:36	1.47E-02
67	9:02:11	1.37E-02
68.	9:02:47	1.29E-02
69	9:03:22 .	1.26E-02
70	9:03:58,.	1.63E-02
71	9:04:33	1.21E-02
72:	9:05:091.	1.53E-02
73	9:05:44 .	1.54E-02
74	9:06:19	9.10E-03
75	9:06:55 .	1.33E-02
76	9:07:30 .	1.19E-02
77	9:08:06	1.53E-02
78	9:08:41 .	1.79E-02
79	9:09:16:.	1,24E-D2
80	9:09:52	1.72E-02 Room air, vent lab
81	9:10:47	1.61E-02 Average = 0.0141
82:	9:11:22 .	2.07E-02 Std. Dev.= 0.0021
9:11:57 L		5
83	9:11:57 .	1.89E-02
84	9:12:33 .	1.01E-02
85	9:13:08 .	1.59E-02
86	9:13:43	1.18E-02
87	9:14:19 .	8.29E-03 N2 in a calibration bag
88	9:14:54	1.12E-02 Average = 0.0113
89	9:15:30 .	1.06E-02 Std. Dev.= 0.0025
90	9:16:05 .	1.66E-02
91	9:16:40 .	1.27E-02
92	9:17:16 .	1.37E-02
93	9:17:51	1.23E-02
94	9:18:27	1.31E-02
95	9:19:02 .	1.50E-02
96	9:19:37	1.63E-02
97	9:20:24 .	1.36E-02
98	9:20:59	1.63E-02
99	9:21:34	1.54E-02
100	9:22:10 .	1.51E-02
101	9:22:45	1.58E-02
102	9:23:20	1.50E-02
103	9:23:56	1.26E-02
104	9:24:31	1.26E-02
105	9:25:07:.	1.28E-02
106	9:25:42	1.71E-02
107	·	
107	9:26:17	1.55E-02
	9:26:53 .	1.69E-02
109	9:27:28 .	1.66E-02
110	9:28:04 .	1.37E-02

, 111 9:28:39	C. 1.23E-02	ı
112 9:29:14 .	1.94E-02	
113 9:29:50	1.18E-02	:
114 9:30:56	, 1.47E-02	
115 9:31:32	1.44E-02	
116 9:32:07	, t. 1.52E-02	
117 9:32:42	1.47E-02	
118 9:33:18.		!
119 9:33:53		
120 9:34:29 .	2.10E-02	
121 9:35:04 .	2.41E-02	
122 9:35:40 .	2.09E-02	<u> </u>
123 9:36:15		
124 9:36:50	1.82E-02	
125 9:37:26	1745 00	
126 9:38:01	1.91E-02	
127 9:38:37.		
128 9:39:12 .	1.70E-02	
128 9:39:12 .	1.50E-02	
	1.54E-02	
130 9:40:42 .	2.01E-02	· · · · · · · · · · · · · · · · · · ·
9:41:18 User	6	
131 9:41:18 .	2.85E-02	· · · · · · · · · · · · · · · · · · ·
132 9:41:53 .	1.90E+00	<u> </u>
133 9:42:31 .	1.90E+00	<u> </u>
134 9:43:06 .	1.90E+00 2 ppm SF6 in N2	
135 9:43:42 .		
136 9:44:17	1.90E+00 Std. Dev.= 0,0052	
137 9:44:53	1.91E+00	
138 9:45:28:.	お金金銭 20 ppm SF6 in N2 :	
139 9:46:03	18.6667 Average = 18.6667	!
140 9:46:39	## Std. Dev.= 0.0577	
141 9:47:16 .	8.01E-02	
142 9:47:54	2.93E-02	i
143 9:48:30 .	2.52E-02	
144 9:49:05	1.76E-02	
145 9:49:40 .	1.96E-02	:
146 9:50:27 .	1.87E-02	
147: 9:51:02 .	1.29E-02	
148 9:51:37	1.73E-02	i
149 9:52:13 .	1.29E-02	
150, 9:52:48,.	4.00E-02	
151 9:53:23 .	2.28E-02	<u> </u>
152 9:53:59 .	1.40E-02	
153 9:54:34.	1.76E-02	
9:55:10 User	7	
154 9:55:10	2.33E+01	
155 9:55:50	2.34E+01	
156 9:56:25 .	2.34E+01	
157 9:57:01;	2.34E+01 25 ppm SF6 in N2	<u> </u>
158 9:57:36	2.35E+01 Average = 23.4000	<u> </u>
The state of the s	2.34E+01 Std. Dev.= 0.0632	
159 9:58:12:.	Z.34ETU I Olu. DEV U.003Z	1

150 0.50.47		
160 9:58:47	9.25E	
161 9:59:27 .	2.81E-	
10:00:03 User	8	
162 10:00:03	352€∓6% .3 ppm SF6 in N2	
163 10:01:14 .	######################################	
164 10:01:50	立正式 d. Dev.= 0.2082	
165 10:02:25 .	2.20E-01	
166 10:03:05	5.32E-02	
167 10:03:41 .	3.47E-02	
168 10:04:16	2.47E-02	<u> </u>
10:04:52 User	9	
169 10:04:52	2.17E-02	
170 10:05:27.	2.13E-02 1	
171 10:06:03	2.24E-02 N2 supply bag	!
172 10:06:38 .	1.85E-02 Average = 0.0210	
173 10:07:13 .	2.12E-02 Std. Dev.= 0.0015	
10:07:49 User	10	
174 10:07:49 .	2.52E-02	
175, 10:08:24}.	2775101 99.7 ppm SF6 in N2	
176 10:09:05	アを注:01 Average = -77.9333	!
177 10:09:40	# 8 E+01 Std. Dev.= 0.2082	
178 10:10:35 .	3.15E-01	
179 10:11:15 .	6.68E-02	
180 10:11:51 .	4.64E-02	
181 10:12:26 .	3.23E-02	
182 10:13:01 .	2.59E-02	
183 10:13:37 .	2.59E-02	
184 10:14:12 .	2.73E-02	
185 10:14:48 .	2.27E-02	
186 10:15:23	1.95E-02	!
187 10:15:58 .	2.20E-02	
188 10:16:34 .	2.53E-02	
189 10:17:09 .	1.88E-02	
190 10:17:45 .	2.24E-02	
191 10:18:20	1.77E-02	<u>:</u>
192 10:18:56	1.74E-02	
193 10:19:31	1.68E-02	
194 10:20:17	1.17E-02	
195 10:20:53	1.63E-02	
196; 10:21:28;.	1.72E-02	
197 10:22:04 .	1.81E-02	
198 10:22:39 .	2.32E-02	i
199: 10:23:14.	1.65E-02	
200 10:23:50	2.18E-02	
201 10:24:25	1.89E-02	
202 10:25:01 .	1.69E-02	
203 10:25:36	1.09E-02	
204 10:26:12 .	1.47E-02	
205 10:26:47 .	1.99E-02	
206: 10:27:22:.	1.71E-02	
207 10:27:58	2.06E-02 Room air, vent lab	
		·

